一 : 数学教案-同底数幂的乘法(二)
同底数幂的乘法(二)
一、教学目标
1.熟练掌握同底数幂的乘法的运算性质并能运用它进行快速计算.
2.培养学生运用公式熟练进行计算的能力.
3.培养学生善于分析问题和解决问题的能力,激发学生勇往直前的斗志.
4.渗透数学公式的结构美、和谐美.
二、学法引导
1.教学方法:讲授法、练习法.
2.学生学法:勤于练习,在练习中理解同底数幂的适用条件及运算方法.
三、重点·难点及解决办法
(一)重点
同底数幂的运算性质.
(二)难点
同底数幂运算性质的灵活运用.
(三)解决办法
在运算中应强化对公式及性质的形式、意义的理解,同时应加强对符号的判别.
四、课时安排
一课时.
五、教具学具准备
投影仪、胶片.
六、师生互动活动设计
1.复习同底数幂的乘法法则并能正确的判断是否合理使用了该法则,让学生能进一步准确掌握该法则.
2.通过两组举例(师生可共同完成),教师应侧重帮助学生分析解题的方法,并及时提醒学生注意易出错的环节.
3.再通过三组不同形式的题型从不同的角度训练学生的思维能力,以提高学生的辨别能力和运算能力.
七、教学步骤
(-)明确目标
本节课重点是熟练运用同底数暴的乘法运算公式.
(二)整体感知
要准确掌握同底数幂的乘法法则,并会运用它熟练灵活地进行同底数幂的乘法运算,对于运算法则,我们除了应掌握它们的正用: 外,还要善于根据题目的结构特征,学会它们的逆向应用: ,当然这个难度较大.在应用同底数幂乘法法则计算时,要注意防止把幂的乘法运算性质与整式加法相混淆.乘法只要求同底就可以用性质计算,而加法则不仅要求底数相同,而且指数也必须相同.
(三)教学过程
1.创设情境、复习导入
(1)叙述同底数幂乘法法则并用字母表示.
(2)指出下列运算的错误,并说出正确结果.
①
②
③
强调:①中 的指数不为0,指数相加时不要漏加 的指数.②不是同类项不能合并.③同底数幂相乘,指数相加不是相乘.
(3)填空:
① ,
② , ,
2.探索新知,讲授新课
例1 计算:
(1) (2) (3)
解:(1)原式
(2)原式
(3)原式
例2 计算:
(1) (2)
(3) (4)
解:(1)原式
(2)原式
(3)原式
(4)
或原式
提问: 和 相等吗?
3.巩固熟练
(1)P93 练习(下)1,2.
(2)计算:
① ②
③ ④
(3)错误辨析:
计算:① ( 是正整数)
解:
说明:化简错了,是正整数,是偶数,据乘方的符号法则本题结果应为0.
②
解:原式
说明: 与 不是同底数幂,它们相乘不能用同底数幂的乘法法则,正确结果应为
(四)总结、扩展
底数是相反数的幂相乘时,应先化为同底数幂的形式,再用同底数幂的乘法法则,转化时要注意符号问题.
八、布置作业
P94 A组3~5;P95 B组1~2.
参考答案
略.
九、板书设计
| 例1 例2 练习 小结: |
二 : 数学教案-一位数同整十、整百数相乘的口算
教学目标
1.通过学习使学生理解一位数同整十、整百、整千数相乘的口算算理,掌握其口算方法.
2.培养学生的口算能力和类推能力.
3.激发学生学习数学的兴趣,同时培养学生认真仔细的良好学习习惯.
教学重点
理解算理,掌握口算方法
教学难点
正确口算一位数同整十、整百数相乘
教学过程
一、复习准备.
1.口算:
2.填空:
(1)6个十是( ),12个十是( ),12个百是( ).
(2)40是( )个十,800是( )个百.
(3) 表示( ),结果得( ).
3.师列式 , ,同时问:这几个算式有什么共同特点?(都是整十、整百数同一位数相乘)师明确:我们今天就来学习一位数同整十、整百数相乘的乘法口算.(出示课题)
二、学习新知.
1.主动参与学习例1.
(1)动手操作,理解算理.
板书 ,问:这个算式表示什么?猜猜得多少?说说你怎样想的?
问:我们用小棒来验证一下,这个答案是否正确.
教师出示1捆小棒,说:这是10根小棒扎成的一捆,表示几个十?(1个十)
师:怎样表示 呢?请你们动手试一试.
学生分组,动手摆小棒,然后汇报: 表示3个20是多少,用小棒表示就是两捆小棒为一份,摆这样的3份,共6捆.
随着学生的汇报,教师出示动画“口算乘法(例1)”.
问:看图说说要求一共有多少根小棒,还可以怎样列式?(板书: )
说明: 表示把3个20合并在一起,就是6个十,所以得60.
师板书:2个十 个十
齐读算式及结果:20乘3等于60.
(2)尝试讨论,掌握算法.
①读算式,写得数,然后说一说你是怎样想的.
②出示:
要求全班动笔把得数填在书上.再观察讨论:分别观察每组题中因数和积有什么相同和不同?你发现了什么规律呢?
学生回答后,教师帮助学生归纳口算算法:当一位数同整十、整百、整千的数相乘时,只要用一位数乘“0”前面的数,再看因数中共有几个0,就在乘积的末尾添上几个“0”.
师:请你用这一方法,口算 , , .
2.迁移类推学习例2.
(1)看图列式并口算得数.
出示动画“口算乘法(例2)”.问:这幅图表示什么?该怎样列式?(表示4个300是多少,列式为 ).板书:
问:你是怎样想的?板书:3个百×4=12个百=1200
追问:还有更快的方法算出得数吗?(先算出 的积,因为300的3后有两个“0”,就在积的末尾添两个“0”.
(2)巩固算法.
①读算式说得数.
②出示:
讨论:怎样做题迅速而准确地写出得数?(每组都先算好第一题的得数,后两道题的积添上相应的数的“0”;
③看谁算得又对又快.(要求学生独立填写)
三、巩固练习:
1.看卡片写得数,比比谁最棒.
2.填空:
(1) 读作( )乘( ),想:( )个( )乘7是( )个( ),是( ).
(2)3乘600得( )个百,就是( ).
3.列式解答下面各题.
(1)幼儿园买来6箱水果,每箱30千克.一共买来水果多少千克?
(2)果园里栽了40棵苹果树,梨树的棵数是苹果树的在8倍.梨树有多少棵?
4.游戏:小猴摘桃(详见探究活动).
四、课堂小结:
今天学习的是什么?你有什么收获?
怎样口算一位数同整十、整百数相乘?还有什么问题?
五、板书设计 :
教案点评:
本节课是在表内乘法和万以数的组成的基础上进行教学的。
教学时,先让学生通过实物演示、动手操作、观察讨论来理解算式的含义和算理,再通过巩固练习来使学生领悟算法.然后引导学生观察讨论并发现规律,探索得出简便算法并加以运用.
教师注意以基本概念为核心,抓住新旧知识联系、运用知识的迁移进行教学,使学生在已有知识的基础上通过迁移类推掌握新知识.
教学中,还注意引导全体学生参与学习的全过程,尤其是口算算理的推导过程.为学生探求问题创设了宽松愉悦的氛围.
探究活动
放爆竹
活动目的
使学生熟练口算乘法,进一步提高口算速度和准确率.
活动准备
教师将口算卡片制作成爆竹形状.
活动过程
1.教师出示卡片,学生抢答或指名说出得数.
2.全班同学做裁判,答对了就发出“叮、嘡——”的爆竹声,答错了就发出“喇”的声音,然后一起修改答案.
小小邮递员
活动目的
使学生熟练口算乘法,进一步提高口算速度和准确率.
活动准备
1.用纸盒做成信箱模样,前后两面都标上数字即算式的结果.
2.制作若干卡片(信),上面写着一些算式.
活动过程
1.请4至6名同学到前边,每人手里拿一个信箱.其它同学每人各拿一封或几封信.
2.游戏开始,学生找算式所对应的得数投入收信箱,双方互查互动.
3.教师可结合学生出现的问题或错误加以点拨,指导他们讨论,辨析,交流.
三 : 同底数幂的乘法导学案
课 题:8.1 同底数幂的乘法
学习目标:理解同底数幂相乘的法则并会运用。
学习重点:同底数幂的乘法运算
学习难点:同底数幂的乘法法则的推导
学习过程:
一、忆旧迎新
1、你能用式子说明乘方的意义吗?
(1)把下列各式写成幂的形式
①10×10×10 ②3×3×3×3 ③a•a•a•a•a ④ a•a•a…a
n个a
(2)指出式子an的各部分名称
2、问题:“神威1”计算机每秒可进行3.84×1012次运算,它工作1h(3.6×103s)
共进行了多少次运算?
3.84×1012×3.6×103 = 3.84×3.6×1012×103 = ?
解决上述问题,关键在于求出:1012×103 = ?即怎样计算同底数幂的乘法。同学们现在做这题可能会感到困难,相信大家学过下面的内容后就可以解决。
二、自学探究:探究同底数幂乘法法则
1、做一做:(完成下表)
算 式 运算过程 结果
22×23 (2×2)×(2×2×2) 25
103×104
a2•a3
a4•a5
2、观察上表,你发现了什么?
(1)以上四个算式的共同特点是同底数幂相乘,计算结果的底数、指数,与已知算式中的底数、指数之间的关系是______________________
(2)根据以上发现,你能直接写出以下各算式的结果吗?
1012•108 =_______ (13 )10•(13 )7 =______ a5•a12 =______
(- 15 )m •(- 15 )n =_________
(3)得出结论:一般地,如果字母m、n都是正整数,那么
am•an = (aaa…a)•(a•a•a…a)(______的意义)
___个a ___个a
= a•a•a…a (乘法结合律) = am+n (_______的意义)
_____个a
幂的运算性质1:am•an = am+n (m、n是正整数)
你能用语言描述这个性质吗?___________________________
(4)注意:这里的底数a可以是任意的实数,也可以是单项式或多项式
(5)议一议:m、n、p是正整数,你会计算am•an •ap吗?
3、法则运用
例1、 计算: (1) (2)(-3)2×(-3)7 (3)106•105•10
(4)x3•xm (5)(a+b)4•(a+b) (6)x2•(-x)5
想一想:(1)上述6个小题中,是否都是同底数幂相乘?哪些是?哪些不是?(2)不是同底数幂的题底数有何特点?还能用同底数幂的乘法法则进行运算吗?(3)在第(3)(5)题中的最后一因数10与(a+b)是否没有指数?
例2、 计算:(1)y4•y-y2•y3 (2)a4•a3•a2 + a6•a2•a
分析:这里是同底数幂相乘与整式加减的混合运算,按照先乘法后加减的顺序进行。
三、反馈练习:
1、课本p47练习1、2
2、计算:(1)2×24-22×23 (2)m7•m+m3•m2•m3
四、学习提升:
1、想一想:26=24•2x x=_______你能把am+n分解成两个幂的积吗?
用一用:2m=3 , 2n=4, 求2m+n的值。
2、(1)若xm-2•xm+2=x10,m=_______ (2)22x+1=8,则x=________
五、学后反思:
1、本节课你学到了什么?
2、学过本节你的问题有哪些?你的困惑是什么?
四 : 数学教案-同底数幂的除法 第二课时
同底数幂的除法(第二课时)
一、教学目标
1.理解并掌握零指数幂和负指数幂公式并能运用其进行熟练计算.
2.培养学生抽象的数学思维能力.
3.通过例题和习题,训练学生综合解题的能力和计算能力.
4.渗透公式自向运用与逆向运用的辩证统一的数学思维观点.
二、重点·难点
1.重点
理解和应用负整数指数幂的性质.
2.难点
理解和应用负整数指数幂的性质及作用,用科学记数法表示绝对值小于1的数.
三、 教学过程
1.创造情境、复习导入
(l)幂的运算性质是什么?请用式子表示.
(2)用科学记数法表示:①69600 ②-5746
(3)计算:① ② ③
2.导向深入,揭示规律
由此我们规定
规律一:任何不等于0的数的0次幂都等于1.
同底数幂扫除,若被除式的指数小于除式的指数,
例如:
可仿照同底数幂的除法性质来计算,得
由此我们规定
一般我们规定
规律二:任何不等于0的数的-p(p是正整数)次幂等于这个数的p次幂的倒数.
3.尝试反馈.理解新知
例1 计算:(1) (2)
(3) (4)
解:(1)原式
(2)原式
(3)原式
(4)原式
例2 用小数表示下列各数:(1) (2)
解:(1)
(2)
练习:P 141 1,2.
例3 把100、1、0.1、0.01、0.0001写成10的幂的形式.
由学生归纳得出:①大于1的整数的位数减1等于10的幂的指数.②小于1的纯小数,连续零的个数(包括小数点前的0)等于10的幂的指数的绝对值.
问:把0.000007写成只有一个整数位的数与10的幂的积的形式.
解:
像上面这样,我们也可以把绝对值小于1的数用科学记数法来表示.
例4 用科学记数法表示下列各数:
0.008、0.000016、0.0000000125
解:
例5 地球的质量约是 吨,木星的质量约是地球质量的318倍,木星的质量约是多少吨?(保留2位有效数字)
解:
(吨)
答:木星的质量约是 吨.
练习:P142 1,2.
四 总结、扩展
1.负整数指数幂的性质:
2.用科学记数法表示数的规律:
(1)绝对值较大的数 ,n是非负整数,n=原数的整数部分位数减1.
(2)绝对值较小的数 ,n为一个负整数, 原数中第一个非零数字前面所有零的个数.(包括小数点前面的零)
五、布置作业
P143 A组4,5,6; B组1,2,3,4.
参考答案
略.
六、板书设计
投影幕 | 引入: 例2 例4 例3 例5 例1 练习 练习 |
五 : 数学教案-幂的乘方与积的乘方(二)
一、教学目标1.进一步理解积的乘方的运算性质,准确掌握积的乘方的运算性质,熟练应用这一性质进行有关计算.
2.通过推导性质进一步训练学生的抽象思维能力,通过完成例2,培养学生综合运用知识的能力.
3.培养实事求是、严谨、认真、务实的学习态度.
4.渗透数学公式的结构美、和谐美.
二、学法引导
1.教学方法:引导发现法、探究法、讲练法.
2.学生学法:本节主要学习幂的乘方性质和积的乘方性质,到现在为止,我们共学习了益的三个运算性质.幂的三个运算性质是整式乘法的基础,也是整式乘法的主要依据,进行幂的运算,关键是熟练掌握幂的三个运算性质,深刻理解每种运算的意义,避免互相混淆,有时逆用幂的三个运算性质,还可简化运算.
三、重点、难点、疑点及解决办法
(-)重点
准确掌握积的乘方的运算性质.
(二)难点
用数学语言概括运算性质.
(三)解决办法
增强对三种运算性质的理解,并运用对比的方法强化训练以达到准确地区分.
四、课时安排
一课时.
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
1.通过一组绦习,以达到复习同底数幂的乘法、益的乘方这两个性质的目的,让学生互问互答.
2.推导积的乘方的公式,在推导过程中让学生说出每一步的理由,以便于学生对公式的准确理解.
3.通过举例来说明积的乘方性质应如何正确使用,师生共练以达到熟练掌握.
4.多种题型的设计,让学生能从不同的角度全面准确地理解和运用该性质.
七、教学步骤
(-)明确目标
本节课重点学习积的乘方的运算性质及其较灵活地运用.
(二)整体感知
通过对积的乘方运算性质的推导,加深对该性质的理解.掌握该性质的关键仍在于正确判断使用公式的条件.
(三)教学过程
1.创设情境,复习导入
前面我们学习了同底数幂的乘法、幂的乘方这两个寨的运算性质,请同学们通过完成一组练习,来回顾一下这两个性质:
填空:
(1) (2)
(3) (4)
学生活动:4个学生说出答案,同桌同学给予判断.
【教法说明】通过完成本练习,进一步巩固、理解同底数幂的乘法,幂的乘方,同时也为顺利完成本节例2做个铺垫.
2.探索新知,讲授新课
我们知道 表示 个 相乘,那么
表示什么呢?(注意: 中 具有广泛性)
学生回答时,教师板书.
这又根据什么呢?(学生回答乘法交换律、结合律)
也就是
请同学们回答 、 、 、 的结果怎样?那么 ( 是正整数)如何计算呢?
;____________个
运用了________律和________律
________个 ________个
学生活动:学生完成填空.
( 是正整数)
刚才我们计算的 、 是什么运算?(答:乘方运算)什么的乘方?(积的乘方)
通过刚才的推导,我们已经得到了积的乘方的运算性质.
请同学们用文字叙述的形式把它概括出来.
学生活动:学生总结,并要求同桌相互交流,互相纠正补充.达成一致后,举手回答,其他学生思考,准备更正或补充.
【教法说明】通过学生自己概括总结,既培养了学生的参与意识,又训练了他们归纳及口头表达能力.
教师根据学生的概括给予肯定或否定,纠正后板书.
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
运算形式 运算方法 运算结果
提出问题:这个性质对于三个或三个以上因式的积的乘方适用吗?如
学生活动:在运算的基础上给出答案.
【教法说明】通过教师有意识的引导,让学生在现有知识的基础上开动脑筋、积极思考,这是理解性质、推导性质的关键,教师在对学生回答给予肯定后板书.
3.尝试反馈,巩固知识
例1 计算:
(1) (2)
(3) (4)
学生活动:每一题目均由学生说出完整的解题过程.
解:(1)原式
(2)原式
(3)原式
(4)原式
【教法说明】对例1的处理,要充分调动学生的参与意识,训练学生运用已有知识去解决新问题的能力,同时,在学生“说”,教师“写”的过程中,教师可随时发现并及时纠正学生解题中出现的问题,如(1)(2)(4)小题中“-”号的处理,并强调解题程序以及幂的乘方性质的运用,同时提出把 着做一个数进行运算.
练习一
(1)计算:(回答)
① ② ③ ④
(2)计算:
① ②
③ ④
(3)下面的计算对不对?如果不对,应怎样改正?
① ② ③
学生活动:第(1)题由4个学生口答,同桌或其他学生给予判断.
第(2)题在练习本上完成,同桌或前后桌互阅,教师抽查.
第(3)题由学生回答.
【教法说明】通过第(1)题可检查学生对性质掌握的熟练程度.第(2)题学生互阅主要是让学生相互交流,培养学生的参与意识.若出现问题由同学指出,有时比老师指出效果要好.第(3)题中的错误是学生应用性质时易出现的,所以在学生回答时,教师对每个问题都应予以强调.
4.综合尝试,巩固知识
例2 计算:
(1)
(2)
学生活动:学生分成两组,每组各做一题,各派一个学生板演.
【教法说明】
学生已具备综合运用性质的能力,让学生尝试解题,目的是训练学生分析问题的能力.分组练习,不仅能激发学生的兴趣,同时也可培养学生的集体荣誉感.学生对知识的印象会更深刻.
5.反复练习,加深印象
练习二
计算:
(1)
(2)
学生活动:学生在练习本上完成,找两个学生板演.
【教法说明】此时学生已能准确运用幂的三种运算性质进行计算,但在计算过程中还会出现各种问题,所以在学生板演时,师生共同订正,可减少不必要的错误出现.
6.变式训练,培养能力
练习三
填空:
(1) (2)
(3) (4)
(5)
学生活动:四人一组研究,讨论得出结果,然后由小组代表说出答案.
【教法说明】此组题主要是训练学生的逆向思维和发散思维,提高学生的应变能力.
(四)总结、扩展
这节课我们学习了积的乘方的运算性质,请同学们谈一下你对本节课学习的体会.
学生活动:谈这节课的主要内容或注意问题等等.
【教法说明】课堂归纳总结由学生来说,可以使学生上课听讲精神集中,还可以训练学生归纳总结的能力.
八、布置作业
P101 A组 4,5.
参考答案
4.(1) (2) (3) (4)
(5) (6)
5.解:(1)原式
(2)原式
本文标题:同底数幂的乘方教案-数学教案-同底数幂的乘法(二)61阅读| 精彩专题| 最新文章| 热门文章| 苏ICP备13036349号-1