61阅读

分数乘法应用题-数学教案-连乘应用题

发布时间:2018-02-14 所属栏目:关于百分数的应用题

一 : 数学教案-连乘应用题

教案示例

课题:连乘应用题

教学目标 

1.通过学习,使学生掌握连乘应用题的基本结构和数量关系,学会列综合算式.

2.使学生学会用两种方法解答连乘应用题的同时能用一种解法检验另一种解法.

3.培养学生的分析能力和灵活应用知识的能力,提高用简炼的数学语言表达的能力.

4.激发学生的学习兴趣,体会生活中处处有数学

5.培养学生认真检验的好习惯.

教学重点

认识连乘应用题的数量关系,初步学会两种解答方法.

教学难点 

理解连乘应用题的两种解题思路,掌握解题方法.

教学过程 

一、复习铺垫.

1.先分析数量关系再解答.

(1)某车间每班有4个组,每组有11人,每班有多少人?

(2)一辆卡车可以装30袋化肥,每袋重50千克,一辆卡车能装多少化肥?

2.演示动画“连乘应用题”

根据动画演示的内容分别补充问题,再解答.

(1)一个商店运进5箱热水瓶,每箱12个,_______________?

(2)每箱有12个热水瓶,每个热水瓶卖35元,______________?

3.引入新课.

教师提问:复习中的应用题都是两个已知条件和一个问题,它们的数量关系共同的特点是什么?(都是求几个相同加数的和用“×”计算.)

把动画复习的两道应用题连起来看,让学生把复习中的两道题合并成一道题.教师根据学生的叙述板书题目,引出例1.

教师导入  :看来,在我们的生活中不光会遇到比较简单的实际问题,还会有这样稍复杂的问题等待我们去解决.今天我们就一起来共同学习:应用题.(出示课题)

二、探究新知.

1.出示例1:一个商店运进5箱热水瓶,每箱12个.每个热水瓶卖35元,一共可以卖多少元?

(1)指名读题,并说出已知条件和问题.

继续演示动画“连乘应用题”,实物图逐步转化为线段图.

(2)小组讨论:你准备怎么解答这道题?并说出解答的思路.

学生以小组为单位讨论,教师巡视,并参与学生的讨论.

(3)汇报讨论的结果,并说说你是怎么想的?

学生可能想到:

方法1:要求一共卖多少元,需要知道每箱卖多少元和一共有多少箱.已知共有5箱,未知每箱多少元.因此,要首先求出每箱多少元.已知每个35元,每箱12个,求出每箱卖多少元就是求12个35是多少,用35×12=420(元),再求出5箱一共卖多少元,就是5个420是多少,用420×5=2100(元).

板书:① 每箱多少元?

35×12=420(元)

5箱一共多少元?

420×5=2100(元)

方法2:要求一共可以卖多少元,需要知道每个卖多少元和一共多少个.已知每个卖11元,未知一共多少个,先要求出一共多少个.每箱有12个,有5箱,求一共多少个就是求5个12是多少,用12×5=60(个),再求一共卖多少元,就是求60个35是多少,用35×60=2100(元).

板书:② 5箱一共多少个?

12×5=60(个)

5箱一共多少元?

35×60=2100(元)

(4)教师谈话:像这样的两步计算应用题,可以分步列式,也可以列综合算式,请同学们自己试着将这两种解法分别列成综合算式.

学生动笔列式,汇报订正:

35×12×5 35×(12×5)

教师提问:第一种解法是先求的什么?再求什么?第二种解法是先求什么?再求什么?为什么要加小括号?不加行不行?

(引导学生说出第一种解法是先求的每箱多少元,再求5箱一共多少元.第二种解法是先求5箱一共多少个,再求5箱一共多少元.因为运算中要先算12×5,就必须加小括号,否则运算顺序就变了,不符合题意.)

(5)比较、辨析:这两种解法有什么区别和联系?

明确两种解法的区别是:第一种解法是先求的每箱多少元再求5箱一共多少元,第二种解法是先求5箱一共多少个再求5箱一共多少元;思路不同,用的已知条件也不同.联系是:最后都能求出来“5箱一共多少元”.

(6)引导学生发现:两种解题思路的相同点是求一共可以卖多少元.不同点是先求什么不一样,先求一箱可以卖多少元,是以每箱多少元作单价;先求一共有多少瓶,是以一瓶多少元作单价.)

师生共同总结:方法不同,结果相同.

(7)学生思考:我们用了两种方法解这道题,怎样检验呢?

(可以互相检验,用其中一种方法解答,用另一种方法检验.)

三、尝试练习.

学校有3排房子,每排有4个教室,每个教室装6盏灯,一共安装多少盏灯?(用一种方法解答,然后用另一种方法检验.)

(1)指名读题,说出已知条件和问题.

(2)独立分析,列分步算式解答.

(3)订正:说出解题思路,再列式计算.

解法1:每排安装多少盏灯?

6×4=24(盏)

3排安装多少盏灯?

24×3=72(盏)

综合算式:6×4×3

=24×3

=72(盏)

答:3排安装72盏灯.

解法2:一共有多少个教室?

4×3=12(个)

一共安装多少盏灯?

6×12=72(盏)

综合算式:6×(4×3)

=6×12

=72(盏)

答:3排安装72盏灯.

(4)检验.师:我们可以从中任选一种方法解答,而另一种方法来检验.从小养成做事认真负责的好习惯.

四、巩固练习.

1.小明的集邮册中,每页贴3行邮票,每行帖5张,3页一共贴多少张邮票?(用两种方法解答)

2.两个小组割青草,每个小组割3捆,每捆8千克,一共割多少千克的青草?(用两种方法解答)

五、总结归纳.

教师提问:(1)这节课学习的应用题有什么特点?(板书:连乘应用题)

(2)这节课你有什么收获?

六、布置作业 .

练习二十二第2题

两个运输队运沙子,每队运3车,平均每车重5吨.一共运多少吨沙子?

练习二十二第3题

张庄小学新盖9间教室,每间教室有6扇窗子,每扇窗子安8块玻璃,一共要安多少块玻璃?

板书设计 

 

探究活动

小小采购员

活动目的

通过制定购物计划,进一步理解连乘应用题的数量关系,体会数学与实际生活的密切联系.

活动内容

1.制定购物计划.

“六一”儿童节到了,学校要给参加游艺活动的同学买奖品.这个任务分给三年级每班去完成,每班分配200元,想想:买什么?买多少?共需要多少钱,200元够不够?和同学一起议一议.先调查、再制定一个计划表.

2.比比谁的计划好,这个任务就交给谁.

3.和爸爸、妈妈一起去购物.

看看,在超市里,你会遇到那些数学问题?

活动建议

1.收集各种文具及小礼品的单价和一个小包装内的数量,做好记录.

2.可以采用小组合作形式,互相交流.

二 : 乘法应用题

(课本第82页、第83页内容,“想想做做”第1-5题)
教学目标 
1、会分析乘法简单应用题的关系。
2、培养学生观察,分析,比较及语言表达能力。
教学准备
圆片若干。
教学过程 
一、创设情景,活动引入。
1、师:小朋友,六一节要到了,大家为了布置教室扎了许多花,我们一起来看看扎了些什么花?(课件显示一个花篮里装了一些蓝花、红花、黄花)
大家起来书数数每种花各有多少朵?
显示从蓝里拿出有2朵   红花有4个2朵  黄花有3个2朵
2、理解:蓝花有2朵,红花有4个2朵,我们就说,红花的朵数是蓝花的4倍,黄花有3个2朵,可以怎么说?(指名回答)
3、摆一摆
学生拿出小图片。(1)要求第一行摆2个圆片,第二行摆的个数是第一行的3倍。
问:第二行要摆的个数是第一行的3倍,第二行摆了几个圆片?你是怎样相的?
板书:3个2    2×3=6
(2)要求第一行摆3个圆片,第二行摆的是第一行的4倍
 一块讨论:你是怎样摆的?又是怎样摆的?
二、合作探究,构建新知
1、看显示:蓝花有2朵,黄花的朵数是蓝花的3倍,你能说出黄花有多少朵吗?你是怎样想的:(四人一组讨论)
交流:黄花的朵数是蓝花的3背,黄花的朵数用2×3=6,因此黄花有6朵。
2、想想:红花的朵数是蓝花的几倍?红花有几朵?
(组内互相说说)列出算式:2×4=8
3、小结:从上面可以看出:求一个数的几倍是多少?就是求几个这个数的和是多少,所以要用乘法计算。
三、形行应用,加强实践
1、课本第82页、83页“想想作做”第1、2题,看图理解图意并填空。学生独立完成。
2、第3题,学生边摆边列式。
3、游戏,变蝴蝶(把第5题做成头饰,学生根据题目选择)
5的4倍    5×4      2的3倍  2×3
3个4      3×4      4的2倍  2×4 
四、自我评价,加深认识。
这节课我们学习了什么知识?你对自己的学习满意吗?
五、课堂作业 
第83页第4题

三 : 关于9的乘法应用题的整理

教学目标 

1.使学生进一步理解和掌握乘法应用题的结构和数量之间的关系.

2.能熟练地解答乘法应用题.

教学重点

理解和掌握乘法应用题的结构和数量关系.

教学难点 

通过分析数量关系,口头为乘法应用题补充条件或问题.

教具、学具准备

补充口诀卡片、例3的挂图、投影仪、复合投影片.

教学步骤 

一、铺垫孕伏.

1.背诵乘法口诀.

2.把口诀补充完整,说出口诀表示的意思及相应的乘法算式.

二( )十八 ( )九五十四 三( )二十七

( )九三十六 九( )八十一 ( )九六十三

3.填空.

(1)求几个相同加数的和用( )计算.

(2)红花3朵,黄花的朵数是红花的2倍,那么黄花的朵数就是___________ 个3朵.

二、探究新知.

1.教学例3.

(1)出示例3(1):小林买了4支铅笔,每支9分钱,一共用了多少钱?

(2)出示实物挂图,指名同学分析数量关系,确定解题方法.分析后板书:

每支铅笔9分钱,意思是说1支铅笔9分钱,而且哪支铅笔都是9分钱.相同加数就是9,4支铅笔是4个9分,求几个几用乘法计算,在书上做.

(3)学生独立解答,主要纠正两点(列式4×9;得数为36分;)要从算式的含义和日常生活用钱习惯上分别予以说明,教师再巡视,使之及时纠正.

(4)出示例3(2):小林买了4支铅笔,买彩笔的支数是铅笔的3倍.买了多少支彩笔?

(5)先让学生独立解答,指名板演,教师巡视发现有典型错误的,让其写在小黑板上.订正时,请学生说是怎么想的,可出示挂图,具体分析说出解题思路.

(6)纠正时,要紧紧扣住彩笔的支数是铅笔的3倍这个条件,明确这个条件所含的意义,即4的3倍就是3个4的和,所以用乘法计算.

2.观察、比较两题的异同点,重点引导学生明白,条件虽然不同,问题也不相同,但从数量关系上分析,最后都是求几个几(即几个相同加数的和)所以两题的计算方法相同,都有乘法计算.

3.反馈练习.

(1)94页做一做第1题.

食堂每天吃3袋米,每天吃面粉的袋数是大米的4倍._____?(口头提出问题再解答)

读题后,指名请学生说题里告诉了什么,还缺少什么.然后分组讨论应补充什么,为什么补充这样的问题.

引导学生回答:

①告诉了食堂每天吃3袋米,吃面粉的袋数是大米的4倍,缺问题.②已知米的袋数,又给了面粉与米的关系,应求面粉多少袋.③分析出面粉的袋数是大米的4倍,就是说面粉的袋数是4个3袋.④根据乘法算式的含义,求几个几是多少,用乘法计算.

归纳解答不完整应用题的方法:

①读题,找出缺少什么.

②分析题中告诉的数量之间的关系,确定应补充的条件或问题.

③列式解答.

(2)利用归纳的解答不完整应用题的方法,解答做一做第2题.

学生分组讨论缺什么,应怎样补充完整,通过分析数量关系,列式解答,教师巡视,指导.

①学生讨论后分组汇报分析结果.

②引导学生口头补充一个条件:(可以天数不同,在2-9之间)

③无论吃几天,吃一天1个3袋,吃2天2个3袋,吃3天3个3袋,吃6天运来6个3袋……,因此无论填吃了几天,求运来多少袋都是求几个几,都用乘法计算.列式分别为3×2=,3×2=,3×4=……3×9=

(3)最后引导学生对两题进行比较,分析数量关系,使学生进一步理解这两题都是求几个相同加数的和和是多少,所以都用乘法计算.

三、巩固发展.

1.停车场上停着2排小汽车,每排3辆,一共停着多少辆小汽车?摩托车的辆数是小汽车的2倍,停着多少辆摩托车?

指名读题,学生独立解答,遇有困难可向老师提出.

集体订正.指名回答,第1题有几个问题?用什么方法计算?为什么用乘法计算?重点强调第二个问题,想求出停多少辆摩托车,必须知道哪两个条件?一个条件题中告诉了,(摩托车的辆数是小汽车的2倍)另一个条件到哪里去找?主要解决隐藏的一个条件,问题就可解答了.

2.动物园里有4只金丝猴,长臂猴的只数是金丝猴的2倍.有多少只长臂猴?长臂猴比金丝猴多几只?

重点指导学生想求第二个问题“长臂猴比金丝猴多几只”(需要哪两个条件?这两个条件到哪去找?用什么方法计算)

四、课堂小结.

1.指导学生观看板书,总结出本节课学了哪些新知识.

2.教师纠正,补充性地小结.主要强调三点:

(1)求几个几和求一个数的几倍是多少,都用乘法计算.理由是求几个相同加数的和用乘法计算.

(2)给不完整的应用题补充条件或问题,前提条件是要从题中告诉的数量中分析数量关系,确定补充什么,补充的必须符合题意.

(3)解答有两个问题的应用题,第二问同解答第一问的应用题分析方法一样,都是看解答问题需要哪两个条件;缺少的条件到题中告诉的条件或第一问题解答出的问题去找,要认真分析数量关系,全面的完整地理解题意.

五、布置作业 .

集邮册里有60分邮票6张,80分邮票42张.__________?(口头提出问题,要用除法计算)

板书设计 

乘法应用题的整理

例3(1)9×4=36(分)=3角6分

答:一共用了3角6分钱.

(2)4×3=12(支)

答:买了12支彩笔.

求几个相同加数的和用乘法计算

(1)3×4=12(袋)

答:每天吃面粉12袋.

(2)3×6=18(袋)

答:运来18袋大米

(乘数也可以是2、34、5、6、7、8、9)

四 : 第3册第三章-表内乘法应用题

教学目标 

1.知道求几个相同加数和的乘法应用题的结构,初步掌握求相同加数和的乘法应用题的分析思路和解答方法,能正确解答这种类型的应用题.

2.通过乘法应用题的分析解答,培养学生认真审题、动脑分析、比较区别等能力.并使学生们学会简单地分析乘法应用题中的数量关系.

3.在授课过程中,教育学生们养成认真审题、正确解题、仔细检查的习惯.

教学重点

使学生理解求相同加数和的应用题的结构和数量关系.

教学难点 

使学生真正掌握此类应用题的结构.

教学过程 

复习导入  

1.口算.

2×3=      2×5=      4×2=     5×1=

5×3=      4×3=      5×5=      1×4=

2.列式计算.

(1)3个4相加是多少?

(2)5个2相加是多少?

3.师:大家已经学习了1~5的乘法口诀,学会了计算相应的式子题和文字叙述题.今天,我们要一起来研究一些生活中的问题,看谁能够应用前面所学的知识来解决这些问题.

4.教师板书课题:应用题

新授

1.出示例8(教师板书)

同学们浇树,每个人浇4棵,3个人一共浇多少棵?

2.分析解答例8

(1)读题,找出题目中的已知条件、要求的问题各是什么?用小圆片摆一摆,表示出题目中的意思.

学生可以答出:每个人浇4棵,有了3个人,要求一共浇了多少棵.(一个学生说,另一个学生在黑板上板贴小圆片.)

 

(2)师:看图思考,要求一共浇了多少棵树应该怎么想?(学生回答:每个人浇4棵,也就是1个4棵,有3个人浇树,就是浇了3个4棵.要求一共浇了多少棵,也就是求3个4是多少.)

(3)问:要求3个4棵是多少,应该用什么方法解答?该怎样列式?说一说为什么要这样列式?

学生边回答教师边板书:4×3=12(棵)

口答:一共浇了12棵.

3.进一步理解例8算式的意义.

师问:谁来说一说,算式中的每个数分别表示什么意思?

(算式中的4表示每个人浇了4棵树,也就是一份是4,算式中的3表示有3个人再浇树,也就是有相同的3份,算式中的12表示3个人一共浇了12棵树,也就是3个4是12.)

4.讲解例9

(1)出示例9(教师板书例9)

小明买了3个扣子,每个5角钱,一共用了多少钱?

(2)师:读题,已知条件是什么?要求的问题是什么?

教师根据学生的叙述板贴:

(3)师:看图思考,要求一共多少分应该怎样想?用什么方法解答?怎样列式?说说为什么? (分小组讨论)

(4)汇报解答方法.(小组同伴分工完成下面的任务:一人负责口头列式,一人负责板书列式,一人负责说为什么这样列式.)

(5)再次说明列式中每个数表示的意义.(算式里的5表示每个扣子5角,3表示买3个扣子,一共是3个5角,要求3个5角是多少应该用乘法计算)

巩固练习

教师要求:

(1)在规定的时间里,根据个人的不同情况,能完成几道题就完成几道题.

(2)如果在规定时间里,完成了所有的题目后,可以思考以下问题:

这几道题有什么共同的特点?(都是用乘法解答的;这几道题都是求几个几是多少.)           

这几道题还可以用什么方法解答?

如果每一道题都能用两种方法解答,你更喜欢哪一种方法,为什么?

归纳质疑

师:通过这节课的学习,大家有什么收获?

1、乘法算式可以用乘法口诀来迅速的计算.

2、求几个几用乘法计算.

3、求几个几还可以用加法来计算,但是用乘法计算起来比用加法计算更简便.

4、我们已经学习了“求几个几” 的文字叙述题和应用题.其实把文字叙述题加上不同的事情就是不同的应用题.

布置作业 (略)

板书设计 

五 : 数学教案-关于9的乘法应用题的整理

教学目标 

1.使学生进一步理解和掌握乘法应用题的结构和数量之间的关系.

2.能熟练地解答乘法应用题.

教学重点

理解和掌握乘法应用题的结构和数量关系.

教学难点 

通过分析数量关系,口头为乘法应用题补充条件或问题.

教具、学具准备

补充口诀卡片、例3的挂图、投影仪、复合投影片.

教学步骤 

一、铺垫孕伏.

1.背诵乘法口诀.

2.把口诀补充完整,说出口诀表示的意思及相应的乘法算式.

二( )十八 ( )九五十四 三( )二十七

( )九三十六 九( )八十一 ( )九六十三

3.填空.

(1)求几个相同加数的和用( )计算.

(2)红花3朵,黄花的朵数是红花的2倍,那么黄花的朵数就是___________ 个3朵.

二、探究新知.

1.教学例3.

(1)出示例3(1):小林买了4支铅笔,每支9分钱,一共用了多少钱?

(2)出示实物挂图,指名同学分析数量关系,确定解题方法.分析后板书:

每支铅笔9分钱,意思是说1支铅笔9分钱,而且哪支铅笔都是9分钱.相同加数就是9,4支铅笔是4个9分,求几个几用乘法计算,在书上做.

(3)学生独立解答,主要纠正两点(列式4×9;得数为36分;)要从算式的含义和日常生活用钱习惯上分别予以说明,教师再巡视,使之及时纠正.

(4)出示例3(2):小林买了4支铅笔,买彩笔的支数是铅笔的3倍.买了多少支彩笔?

(5)先让学生独立解答,指名板演,教师巡视发现有典型错误的,让其写在小黑板上.订正时,请学生说是怎么想的,可出示挂图,具体分析说出解题思路.

(6)纠正时,要紧紧扣住彩笔的支数是铅笔的3倍这个条件,明确这个条件所含的意义,即4的3倍就是3个4的和,所以用乘法计算.

2.观察、比较两题的异同点,重点引导学生明白,条件虽然不同,问题也不相同,但从数量关系上分析,最后都是求几个几(即几个相同加数的和)所以两题的计算方法相同,都有乘法计算.

3.反馈练习.

(1)94页做一做第1题.

食堂每天吃3袋米,每天吃面粉的袋数是大米的4倍._____?(口头提出问题再解答)

读题后,指名请学生说题里告诉了什么,还缺少什么.然后分组讨论应补充什么,为什么补充这样的问题.

引导学生回答:

①告诉了食堂每天吃3袋米,吃面粉的袋数是大米的4倍,缺问题.②已知米的袋数,又给了面粉与米的关系,应求面粉多少袋.③分析出面粉的袋数是大米的4倍,就是说面粉的袋数是4个3袋.④根据乘法算式的含义,求几个几是多少,用乘法计算.

归纳解答不完整应用题的方法:

①读题,找出缺少什么.

②分析题中告诉的数量之间的关系,确定应补充的条件或问题.

③列式解答.

(2)利用归纳的解答不完整应用题的方法,解答做一做第2题.

学生分组讨论缺什么,应怎样补充完整,通过分析数量关系,列式解答,教师巡视,指导.

①学生讨论后分组汇报分析结果.

②引导学生口头补充一个条件:(可以天数不同,在2-9之间)

③无论吃几天,吃一天1个3袋,吃2天2个3袋,吃3天3个3袋,吃6天运来6个3袋……,因此无论填吃了几天,求运来多少袋都是求几个几,都用乘法计算.列式分别为3×2=,3×2=,3×4=……3×9=

(3)最后引导学生对两题进行比较,分析数量关系,使学生进一步理解这两题都是求几个相同加数的和和是多少,所以都用乘法计算.

三、巩固发展.

1.停车场上停着2排小汽车,每排3辆,一共停着多少辆小汽车?摩托车的辆数是小汽车的2倍,停着多少辆摩托车?

指名读题,学生独立解答,遇有困难可向老师提出.

集体订正.指名回答,第1题有几个问题?用什么方法计算?为什么用乘法计算?重点强调第二个问题,想求出停多少辆摩托车,必须知道哪两个条件?一个条件题中告诉了,(摩托车的辆数是小汽车的2倍)另一个条件到哪里去找?主要解决隐藏的一个条件,问题就可解答了.

2.动物园里有4只金丝猴,长臂猴的只数是金丝猴的2倍.有多少只长臂猴?长臂猴比金丝猴多几只?

重点指导学生想求第二个问题“长臂猴比金丝猴多几只”(需要哪两个条件?这两个条件到哪去找?用什么方法计算)

四、课堂小结.

1.指导学生观看板书,总结出本节课学了哪些新知识.

2.教师纠正,补充性地小结.主要强调三点:

(1)求几个几和求一个数的几倍是多少,都用乘法计算.理由是求几个相同加数的和用乘法计算.

(2)给不完整的应用题补充条件或问题,前提条件是要从题中告诉的数量中分析数量关系,确定补充什么,补充的必须符合题意.

(3)解答有两个问题的应用题,第二问同解答第一问的应用题分析方法一样,都是看解答问题需要哪两个条件;缺少的条件到题中告诉的条件或第一问题解答出的问题去找,要认真分析数量关系,全面的完整地理解题意.

五、布置作业 .

集邮册里有60分邮票6张,80分邮票42张.__________?(口头提出问题,要用除法计算)

板书设计 

乘法应用题的整理

例3(1)9×4=36(分)=3角6分

答:一共用了3角6分钱.

(2)4×3=12(支)

答:买了12支彩笔.

求几个相同加数的和用乘法计算

(1)3×4=12(袋)

答:每天吃面粉12袋.

(2)3×6=18(袋)

答:运来18袋大米

(乘数也可以是2、34、5、6、7、8、9)

本文标题:分数乘法应用题-数学教案-连乘应用题
本文地址: http://www.61k.com/1140241.html

61阅读| 精彩专题| 最新文章| 热门文章| 苏ICP备13036349号-1