61阅读

圆柱体积教学设计-圆柱的体积教案

发布时间:2017-09-28 所属栏目:小学数学教案

一 : 圆柱的体积教案

教学目标:
    1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
    2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
    3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力
    4.借助实物演示,培养学生抽象、概括的思维能力。
    教 具:圆柱的体积公式演示教具。
    教学过程:
    一、情景引入
    1、出示圆柱形水杯。
    (1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?
    (3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。
    2、创设问题情景。
    如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?
    今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)
    二、新课教学:
    设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
    1.探究推导圆柱的体积计算公式。
    课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。c、依次解决上面三个问题。①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积) ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)③圆柱的体积=底面积×高 字母公式是v=sh(板书公式)
    讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的 体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高 。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积×高)用字母表示: 。(板书:v=sh)(设计意图:在新课教学中,先让学生通过复习旧知识,在观察中理解,在比较中归纳,通过这些措施可以使学生切实经历圆柱体积公式充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力)
    要用这个公式计算圆柱的体积必须知道什么条件?
    填表:请同学看屏幕回答下面问题,
    底面积(㎡) 高(m) 圆柱体积(m3)

二 : 圆柱的体积教学设计

圆柱的体积

学情分析:

根据六年级的教学情况来看,班中绝大部分同学都能跟上现有的进度,通过本节课教学要使灵活运用圆柱体积的计算方法解决生活中一些简单的问题,通过想象、操作等活动,理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

教学目标:

1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。

2.通过圆柱体体积公式的推导,培养学生的分析推理能力。

3.理解圆柱体体积公式的推导过程,掌[www.61k.com)握计算公式;会运用公式计算圆柱的体积。

教学重点:

圆柱体体积的计算

教学难点:

圆柱体体积公式的推导

教学用具:

圆柱体学具、课件

教学过程:

一、复习引新

1.求下面各圆的面积(回答)。

(1)r=1厘米;(2)d=4分米;(3)C=6.28米。

要求说出解题思路。

2.想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?指出:把1个圆等分成若干等份,可以拼成1个近似的长方形。这个长方形的面积就是圆的面积。

3.提问:什么叫体积?常用的体积单位有哪些?

4.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)

二、探索新知

1.根据学过的体积概念,说说什么是圆柱的体积。(板书课题)

2.怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成1个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一 起来讨论。

3.公式推导。(有条件的可分小组进行)

(1)请同学指出圆柱体的底面积和高。

(2)回顾圆面积公式的推导。(切拼转化)

(3)探索求圆柱体积的公式。

根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。教师演示圆柱体积公式推导演示教具:把圆柱的底面分成许多相等的扇形(数量一般为十六个),然后把圆柱切开,照下图拼起来,(图见教材)就近似于1个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。

(4)讨论并得出结果。

你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的长方体。这个长方体的底面积与圆柱体的底面积相等,这个长方体的高与圆柱体的高相等。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:圆柱的体积=底面积×高(板书:圆柱的体积=底面积×高)用字母表示:

(板书:V=Sh)

(5)小结。

圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?

4.教学算一算

审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)

教学“试一试”

小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。

三、巩固练习练习册里的练习题

四、课堂小结

这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱些长方体)得出了圆柱体的体积计算公式V=Sh。

三 : 圆柱的体积教学设计

一、创设情境,导入新课
小英的爸爸送了她的妈妈一盒茶叶(出示图片),妈妈非常高兴,小英是个爱动脑筋的孩子,她很想知道这盒茶叶的体积,爸爸妈妈被难住了,你们能帮她们想想办法吗?
生:就是求这个茶叶盒的容积。
师:如果茶叶盒的厚度不计呢?生:那只要求这个茶叶盒的体积就可以了。
师:怎样求这个圆柱形茶叶盒的体积呢?如果我们会求圆柱的体积这个问题是不是就迎刃而解了?这节课我们就来探索如何计算圆柱的体积。(板书课题)
二、探索新知
1、大胆猜测一下:如何计算圆柱的体积?
生:圆柱的体积=底面积×高……
师:你能说一说你为什么这样想吗?
生:因为长方体和正方体的体积都用底面积乘高来计算。
师:为什么你会想到联系正方体和长方体的体积公式呢?
生:因为它们都是直柱体。
2、师:说得好,那么究竟圆柱的体积是不是用底面积乘高来计算呢?下面我们就来验证我们的猜想。请大家先独立思考验证方法,有了想法后在小组内交流。
3、学生小组活动。
4、全班反馈:你们的猜想得到验证了吗?你们是如何验证的?谁愿意上前面来为大家演示?师(出示圆柱体教具)
生:将圆柱体先切成若干块,然后再重新拼成长方体。
师:怎样切,怎样拼?
生:沿底面直径切开,然后再拼起来。
生:(学生多人发表意见)…………
生:沿圆柱的底面直径切开,使切面与底面垂直。这样切分成若干个底面是扇形的立体图形,再将这些切分下来的每一块重新拼在一起,就可以拼成一个近似长方体的立体图形。(学生在说的同时用教具将切、拼的过程演示给全班同学看)
师:刚才这位同学演示得很好。现在让老师再来给同学们演示一下(突出分的份数多与少对拼成的近似长方体形状的影响)。你发现了什么?
生:分的份数越多,拼成的形体越接近于长方体。
师:如果我们分成成百上千份,甚至更多,再拼起来,你想象一下它的形状会怎么样?
生:就是长方体。
师:这个圆柱体的体积和拼成的长方体的体积有什么关系?
生:相等。
师:(再用教具演示切、拼的过程,让学生注意观察)你还发现了什么?
生:圆柱的底面积等于拼成的长方体的底面积。
生:圆柱的高等于拼成的长方体的高。
(多媒体演示)将圆柱切拼成一个长方体,突出强调圆柱的底面积与长方体底面积的关系,圆柱的高与长方体高的关系以及圆柱体体积与长方体体积的关系。引导学生口叙圆柱转化成长方体,以及其底面积、高和体积的关系。
师:谁来完整地叙述一下刚才多媒体演示的过程?
生:将圆柱体切拼成一个长方体,这个长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高,长方体的体积等于圆柱的体积。因为长方体的体积等于底面积乘高,所以圆柱的体积也等于底面积乘高。
师:如何用字母表示圆柱的体积计算公式呢?
生:用字母v表示体积,s底表示底面积,h表示高,则圆柱的体积计算公式表示为:v=s底×h=s底h
(学生分组,相互口述以上转化及圆柱体积计算公式得出的过程)
(学生分组口述以后,再请学生说一说圆柱体积计算公式的推导过程)
教师板书:v=s底×h=s底h
5、理解公式,解决开课问题
手指v=s底×h=s底h,要想求出体积,必须知道哪两个量?
生:底面积和体积。
师:现在你能帮小英算出茶叶的体积了吧。
出示习题
三、小结与质疑
解决了上面两个小问题,你想说什么?
生:无论怎样,都要先求出底面积。师:对于圆柱体的体积计算,同学们还有什么问题吗?生:没有。
师:完全正确,那我们现在就来计算圆柱的体积。
四、巩固练习
(一)、计算下面各圆柱的体积
让学生先自己独立地做,一人板算,然后订正。
师:同学们的解答非常好,正确率非常高,希望在以下的练习中再接再厉。
(二)、判断,错的请改正过来
1、一个圆柱体铁罐,底面直径是2米,高3米,求它的体积,列式为:3.14×2×3。()
2、圆柱的底面周长扩大2倍,高不变,圆柱的体积扩大4倍。()
3、圆柱的底面直径是4dm,正方体的棱长也是4dm,它们的高相等,则圆柱的体积大。()
学生独立判断,反馈时手势判断,并说明理由和图和改正。
(三)、灵活应用
1、每根柱子的体积约是376.8立方分米,柱子的高约是3米,则柱子的底面积约是多少平方分米?
学生独立做题,反馈:你怎么想到底面积如何求?
订正,针对学生板演的错误(如应先换算单位再算,而学生却忽略了)提示学生注意审题等。
生:根据体积公式推导出来的。
2、如果将这个圆柱形柱子做成一个长方体柱子,该长方体柱子的底面长6dm,宽是1.57dm,则这个长方体柱子的高是多少米?
学生独立做题,反馈:这道题会用到哪个公式?体积怎么得来的?
生:用的是推导公式,高等于体积除以底面积,体积和圆柱形柱子的体积是一样的。
(四)、思考题
一个圆柱形谷堆高1.2米,占地15平方米,每立方米稻谷约重600千克,
把这些稻谷装进粮仓里,正好占这个粮仓的3/5,若将粮仓装满,则能够
存放稻谷约多少千克?
五、全课总结
师:这节课我们学了什么内容?你有什么收获?
生:这节课我们学习了圆柱的体积,知道了圆柱的体积计算方法,…………
师:同学们总结得很好。这节课就上到这。

本文标题:圆柱体积教学设计-圆柱的体积教案
本文地址: http://www.61k.com/1074580.html

61阅读| 精彩专题| 最新文章| 热门文章| 苏ICP备13036349号-1