一 : 乘除法的对比练习
一、教学过程二 : 乘法和除法的复习 (人教四上)
乘法和除法的复习教学目标:知识与技能:1、通过复习,巩固所学的乘除法口算和笔算的计算方法,在计算过程中能灵活应用因数和积的关系,商变化的规律正确熟练地计算。2、培养学生的计算能力和解决问题的能力。过程与方法:使学生参与复习的全过程,通过合作交流等活动,使学生形成知识网络。情感、态度和价值观:培养学生的反思意识和合作精神。重点:乘除法笔算的方法,积的变化规律,商不变的规律。难点:正确熟练地计算教具:题卡教学过程:一、复习整理:1、本节课对“乘法和除法”这部分知识进行整理和复习。板书课题:复习乘法和除法。2、打开数学书看第三单元和第五单元的内容,看看都学习了哪些内容?哪个小组愿意汇报你们组的交流情况?老师指导并归纳,总结在黑板上。问:你认为这两个单元哪些内容比较难?你最容易出错?二、复习知识点1、复习口算直接说结果。2700÷30=、180÷60=、360÷40=、240÷60=、800÷40=、420÷60=、54÷3=、60÷30=、250÷50=、130×5=、2×380=、150×6=、18×3=、23×4=、7×13=、460×2=、7×50=。说一说口算的方法是什么?2、复习估算522÷70≈、710÷92≈、543÷90≈、350÷68≈、455÷70≈、678÷80≈。说一说估算的方法是什么?59×103≈、720×12≈、315×72≈、408×18≈、209×29≈。3、复习积的变化规律,商不变的规律。不计算,直接写出下面的积或商。15×39=585 792÷24=33150×39= 396÷12=15×390= 1584÷48=根据什么算出结果的?4、复习笔算1)948÷38=、2496÷47=、4325÷48=、3276÷84=。2)245×27=、530×48=、509×50=、802×37=。组织学生笔算,说一说笔算的方法是什么?5、解决问题1)甲火车14小时行驶1750千米,乙火车10小时行驶1350千米,哪列火车快,快多少?指出题中的数量关系,列式计算。路程÷时间=速度2)有26条船,每天收入780元,照这样计算,现在增加了15条船,每天一共收入多少元?3)总复习9、10四.总结: 这节课复习了什么?有什么收获?五、作业:练习二十一4——8三 : 分式的乘除法
第一课时
一、教学过程
【复习提问】
1.分式的基本性质?
2.分式的变号法则?
【新课】
数学小笑话:(配上漫画插图幻灯片)
从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他马上欣喜地说:“够了!够了!”
问:这个富家子弟为什么会犯这样的错误?
分数约分的方法及依据是什么?
1.提出课题:分式可不可以约分?根据什么?怎样约分?约到何时为止?
学生分组讨论,最终达成共识.
2.教师小结:
(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.
(2)分式约分的依据:分式的基本性质.
(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.
(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.
3.例题与练习:
例1 约分:
(1);
请学生观察思考:①有没有公因式?②公因式是什么?
解:.
小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.
(2);
请学生分析如何约分.
解:.
小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②注意对分子、分母符号的处理.
(3);
解:原式.
(4);
解:原式
.
第 1 2 页
四 : 分式的乘除法
第一课时
一、教学过程
【复习提问】
1.分式的基本性质?
2.分式的变号法则?
【新课】
数学小笑话:(配上漫画插图幻灯片)
从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他马上欣喜地说:“够了!够了!”
问:这个富家子弟为什么会犯这样的错误?
分数约分的方法及依据是什么?
1.提出课题:分式可不可以约分?根据什么?怎样约分?约到何时为止?
学生分组讨论,最终达成共识.
2.教师小结:
(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.
(2)分式约分的依据:分式的基本性质.
(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.
(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.
3.例题与练习:
例1 约分:
(1);
请学生观察思考:①有没有公因式?②公因式是什么?
解:.
小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.
(2);
请学生分析如何约分.
解:.
小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②注意对分子、分母符号的处理.
(3);
解:原式.
(4);
解:原式
.
(5);
解:原式.
例2 化简求值:
.其中,.
分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算提供了便利条件.
解:原式.
当,时.
.
二、随堂练习
教材P65练习1、2.
三、总结、扩展
1.约分的依据是分式的基本性质.
2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.
3.若分式的分子、分母中有多项式,则要先分解因式,再约分.
四、布置作业
教材P73中2、3.
补充思考讨论题:
1.将下列各式约分:
(1);(2);
(3)
2.已知,则
五、板书设计
五 : 分式的乘除法
一、教学过程【复习提问】
1.分式的基本性质?
2.分式的变号法则?
【新课】
数学小笑话:(配上漫画插图幻灯片)
从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他马上欣喜地说:“够了!够了!”
问:这个富家子弟为什么会犯这样的错误?
分数约分的方法及依据是什么?
1.提出课题:分式可不可以约分?根据什么?怎样约分?约到何时为止?
学生分组讨论,最终达成共识.
2.教师小结:
(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.
(2)分式约分的依据:分式的基本性质.
(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.
(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.
3.例题与练习:
例1 约分:
(1);
请学生观察思考:①有没有公因式?②公因式是什么?
解:.
小结:①分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分.②分子或分母的系数是负数时,一般先把负号提到分式本身的前边.
(2);
请学生分析如何约分.
解:.
小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②注意对分子、分母符号的处理.
(3);
解:原式.
(4);
解:原式
.
(5);
解:原式.
例2 化简求值:
.其中,.
分析:约分是实现化简分式的一种手段,通过约分可把分式化成最简,而最简分式为分式间的进一步运算提供了便利条件.
解:原式.
当,时.
.
二、随堂练习
教材P65练习1、2.
三、总结、扩展
1.约分的依据是分式的基本性质.
2.若分式的分子、分母都是几个因式的积的形式,则约去分子、分母中相同因式的最低次幂,分子、分母和系数约去它们的最大公约数.
3.若分式的分子、分母中有多项式,则要先分解因式,再约分.
四、布置作业
教材P73中2、3.
补充思考讨论题:
1.将下列各式约分:
(1);(2);
(3)
2.已知,则
五、板书设计
本文标题:分式的乘除法练习题-乘除法的对比练习
61阅读| 精彩专题| 最新文章| 热门文章| 苏ICP备13036349号-1