61阅读

三角形内角和教学反思-《三角形内角和》教学谈

发布时间:2018-02-16 所属栏目:八年级数学教案

一 : 《三角形内角和》教学谈

学习兴趣是学生学习的内部动机,是推动学生探求内部真理与获取能力的一种强烈欲望,它在学习活动中起着十分重要的作用。教学实践表明,学生如果对数学知识充满好奇心,对学会知识有自信心,那么他们总是主动积极、心情愉快的进行学习。因此,在数学课堂教学中,我们要时刻注意发掘教材孕伏的智力因素,审时度势,把握时机,因势利导地为学生创造良好的教学情境 ,激发学生的兴趣,让学生在学习数学中愉快地探索。下面本人结合苏教版第七册《三角形内角和》一课,谈几点体会。
一、开讲生趣
  俗话说:“良好的开端是成功的一半”。一堂课的开头虽然只有短短几分钟,但它却往往影响一堂课的成败。因此,教师必须根据教学内容和学生实际,精心设计每一节课的开头导语,用别出心裁的导语来激发学生的学习兴趣,让学生主动地投入学习。如“三角形内角和”的引入部分,我先要求学生拿出自己预先准备的三个不同的三角形(直角、锐角和钝角三角形),各自用量角器量出每个三角形中三个角的度数,然后分别请几个学生报出不同三角形的两个角的度数,我当即说出第三个角的度数。一开始,有几位同学还不服气,认为可能是巧合,又举例说了几个,都被我一一猜对了,这时学生都感到惊奇,教师的答案怎么和他们量出的答案会一致的。“探个究竟”的兴趣因此油然而生。
二、授中激趣
  开讲生趣仅作为导入新课的“引子”,那成功之路,至多只行了一半。还需要在讲授新课中适时地激发学生的兴趣,恰到好处地诱导,充分挖掘知识的内在魅力,以好奇心为先导,引发学生强烈的求知欲。比如上例新授部分,在板书课题后,接着又让全班学生动手做一个实验:分别把各自手里的三个三角形(锐角、钝角、直角三角形)的三个角剪下,再分别把每个三角形的三个角拼在一起,并言之有趣地激励学生:看谁最先发现其中的“奥秘”;看谁能争取到向大家作“实验成功的报告”。这时,学生心中激起了层层思考的涟漪,课堂气氛既紧张又活跃,发言争先恐后。还有的学生通过把正方形的纸沿对角线对折,变成两个完全一样的三角形,因为正方形有4个直角,是360 °,所以每个三角形的内角和是180°好方法。显然,此时不但学生对三角形内角和是180°的性质有了感性的基础,而且教师对这一性质的讲解也已到了“心有灵犀一点通”的最佳时刻。
三、设疑引趣
  学起于思,思源于疑。“疑”是学生学习数学知识中启动思维的起点。在数学教学中,作为教师要善于提出具有引发学生思考的问题,使学生见疑生趣,产生有趣解疑的求知欲和求成心。
比如“三角形内角和”在新授结束后
师:(出示一个大三角形)它的内角和是多少度?
生:180 °。
师:(出示一个很小的三角形 )它的内角和是多少度?
生:180  °。
师:把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度?(生有的答90 °,有的180 °。)
师:哪个对?为什么?
生:180°,因为它还是一个三角形。
师:每个小三角形的度数是180°,那么这样的两个小三角形拼成一个大三角形,内角和是多少度?
这时学生的答案又出现了180°和360°两种。
师:究竟谁对呢?
学生个个脸上露出疑问,经过一翻激烈的讨论探究后,学生开始举手回答。
生1:180 °,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180 °。
生2 :我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。
师:表扬:你真聪明。演示  :    

  这里教师通过提出两个具有思考性的问题,层层设疑,使学生探究知识的兴趣波澜起伏,时刻处在紧张而又兴奋的学习状态中。
四、练中有趣
  练习是巩固所学知识,形成技能技巧的必要途径,是教学的一个重要环境。但也往往被呆板的练习形式、乏味的练习内容,把在学习新知识中激发出来的学习兴趣,而无情淹没,使学生愉快的心情、振奋的精神受到严重的扼杀和抑制。因此课堂练习要设计得精彩有趣,教学中教师根据所学内容,设计不同形式的练习。
1、练习形式要注意层次性。
  设计不同类型、不同层次的练习题,从模仿性的基础练习到提示的变式练习再到拓展性的思考练习,降低习题的坡度,照顾不同层次的学生,使学生始终保持高昂的学习热情。比如“三角形内角和”中在运用规律解题时, 先已知两角求第三角;再已知直角三角形的一锐角求另一角,感知直角三角形的两锐角之和是90°;最后已知三角形的一角,且另两角相等,求另两角的度数,或已知三角形三个角的度数均相等,求三角形的三个角的度数。以上设计,通过有层次的练习,不断掀起学生认知活动的高潮,学生学起来饶有兴趣,没有枯燥乏味之感。 
2、练习形式要注意科学性和趣味性。
  布鲁纳说过:“学习的最好刺激,是对所学材料的兴趣。”教学时可适当选编一些学生喜闻乐见的、有点情节又贴进学生生活经验以及日常生活中应用较广泛的题目,通过少量的趣题和多种形式的题目,使学生变知之为乐知。比如,本课在完成基本题后,让学生在自己的本子上画出一个三角形,要求其中两个内角都是直角。在学生画来画去都无从下手时,个个手抓脑袋,冥思苦想。这时教师说出“画不出来”的理由,学生们恍然大悟。
五、课尾留趣
  一节课的前半节,是学生接受知识的最佳时刻,但一到后半节,学生注意力容易分散,这时设计一些有趣的数学活动、游戏,不仅可以使大脑得到适当休息,又能吸引学生的注意力,达到“课业结束趣犹在”的效果。
在本课结束时,我设计了一道抢答题。
揭示:把左图截去一部分,(每次只截一次)要使剩下图形的内角和是180°,有几种截法?”
  学生原以为截法只有几种,到后来知道截法可以有无数种,感到是“一大发现”。但更使他们感到“一大发现”的是尽管截法有无数种,但剩下的图形的种类只有一种,因为内角和是180°的图形只能是三角形。这样练习,使学生在探索中不断体验到成功的乐趣和喜悦。
六、“评”中增趣
  这里的“评”是指教师对学生答问或作业的口头或书面评价。数学材料本身因其感情色彩较少,难以引起学生的直接兴趣。如果数学教师能在教学语言、语速、语调和语气上风趣一些,幽默一些,对学生的答问、作业的评价上恰当地赋予一点情感味,那么,学生在学习数学过程中可增添妙趣,乐学而不疲。
  例如在本课教学中,在学生发现了三角形内角和特征时,我立即表扬,“你真能干,你是咱班第一个发现真理的数学家”;又如学生发现了另外一种证明三角形的方法时,我对他说,“你真聪明。”;在学生解题终于成功时,我又说:“祝贺你,成功了”等等,用以激发学生的求成心。另外在对待学生作业中有困难的同学,我总是用一些深情地惋惜语。如“真遗憾”、“差一点就对了”、“想得不错,但说……”、“没关系再说一次”、“下次肯定会更好”。……这些尊重、企盼、惋惜的用语对中差生来说,其作用不仅是情感上的补偿而且是心理上的调整,可以使他们在学习数学的探索中,变无趣为有趣,变有趣为兴趣,变兴趣为乐趣。
  科学家爱因斯坦说过:“热爱是最好的老师。”作为一名数学教师,我们要在教学中根据不同的教学内容,不同的学生实际,灵活多变地采用多种做法,进一步激发学生学习兴趣,使学生的思维活跃起来,使学生的脑子积极转动起来,从而活跃课堂气氛,提高课堂教学效果。

二 : 三角形的内角和 教案

教学内容:教科书p28例题、“试一试”p29“想想做做” (三角形的内角和) 教学目标:1、 让学生通过观察、操作、比较、归纳,发现“三角形的内角和是180°”。2、 让学生学会根据“三角形的内角和是180°”这一知识求三角形中一个未知角的度数。3、 让学生在学习活动中进一步增强探索的意识,发展观察、归纳、概括能力、和情推理能力和初步的空间观念。 教学重、难点: 探索三角形内角和是180° 教学准备:量角器 三角尺 正方形纸等 教学过程教师活动学生活动 创设情境激趣导入请量出自己准备的三角形的三个角的度数谈话设疑:只要你们说出其中两个角的度数,我能猜出第3个角的度数师生互动 生说师猜用自己的三角形按要求操作同桌交流(小组交流) 对照检查(有异议的做好记录) 自主探索获取新知 初步感知内角和180° 实验验证自主探索 请观察自己手中的三角板它们是什么三角形?屏幕显示同样的三角形,指名指角取出各自的三角板观察交流(它们都是直角三角形)互相指三个角 叙述:这三个角是三角形的三个内角。你知道三角板三个内角的和是多少度吗?检查学生活动情况(测量结果、计算结果)指名说内角和提问:你发现了什么?三角尺的三个内角和是180°,是不是每个三角形的内角和都是180°呢?(认识内角,互相交流)分组活动 量角度 算内角和小组交流各自的想法90°+60°+30°=180°90°+45°+45°=180°(两个三角板内角和都是180°)猜测并交流 你打算用什么方法验证呢?(根据情况适当提示不同的方法)巡视 指导 了解学生实验情况组织学生演示、交流同桌讨论 汇报交流分组合作验证三角形内角和交流实验方法可能运用的实验方案(提示不能只用一种三角形):① 画一个三角形,分别量出3个角的度数,并算出3个角的度数和(可能会出现不同情况,要说明:测量的结果存在误差是正常情况,同时引导发现它们的和都在180°左右)② 撕下三角形的三个内角并把它们拼在一起(投影演示):拼成一个平角③ 折三角形的三个内角,使它们正好折在一起(投影演示):拼成一个平角结合实验交流情况,提问:通过多次实验,你们能得出什么结论吗?板书:三角形的内角和是180°现在你能像老师那样猜出角度吗?互相交流、提示(三角形的内角和都是180°) 同桌互相猜角度应用知识解决问题“试一试”出示“试一试” 巡视 个别指导提问:∠3多少度?你是怎么算的?(适当提问)请大家量一量,看看与算出的结果是否一样?独立完成∠3角度的计算交流180°-75°-39°=66°180°-(75°+39°)=66°独立量角度并交流(相同) “想想做做”第1题 提出练习要求你是怎么算的?第三题还可以怎么算?为什么?独立完成未知角的计算交流算法(从180°中依次去减)观察交流:90°-55°=35° 综合运用延伸扩展“想想做做”第2题用两块完全一样的三角形可以拼成一个三角形吗?(学生拼好后选择不同拼法展示)哪些是拼成的三角形的内角?这些角分别是多少度?拼成的三角形的内角和是多少度?结合学生回答,小结:任何一个三角形的内角和都是180°独立动手实践交流不同拼法小组中分别指出拼成的三角形的内角,并且说出它们的角度独立计算,交流:拼成的三角形的内角和还是180° “想想做做”第3题提出操作要求正方形的内角和是多少度?怎么算?对折后是什么图形?内角分别是多少度?内角和呢?再对折后图形有什么变化?内角分别是多少度?内角和呢?两次对折出的三角形什么在变?什么没变?出示教师用三角尺,与你们的三角尺比一比,谁的三角尺内角和大?独立按要求操作并填写四个内角都是直角,内角和360°对折后是三角形,三个内角分别是:90°45°45°,内角和是180°再对折后是三角形,三个内角分别是:90°45°45°内角和是180°两次对折出的三角形大小在变,内角和没变一样大。任何一个三角形内角和都是180° “想想做做”第4题提出练习要求它们各是什么三角形?独立完成角度的计算并交流判断交流并说明理由 “想想做做”第5题出示第5题你是怎么算的?(结合回答板书)比较两种算法,你喜欢哪种?你有什么发现? 独立完成计算并交流180°-90°-35°=55°或90°-35°=55°(喜欢下面一种的会较多)求直角三角形的一个锐角,用90°减另一个锐角的度数,计算比较简便 “想想做做”第6题如果一个三角形有两个直角,结果会怎样?那么一个三角形最多有几个直角?一个三角形最多有几个钝角呢?为什么?讨论交流:内角和会大于180°一个三角形最多有1个直角讨论交流,汇报交流结果 全课总结这节课你学到了哪些数学知识? 教学随笔:

三 : 数学教案-三角形的内角和

教学目标 

1. 掌握三角形内角和定理及其推论;

2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;

3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

教学重点:三角形内角和定理及其推论。

教学难点 三角形内角和定理的证明

教学用具:直尺、微机

教学方法:互动式,谈话法

教学过程 

1、创设情境,自然引入

把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?

问题2 你能用几何推理来论证得到的关系吗?

对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)

新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

2、设问质疑,探究尝试

(1)求证:三角形三个内角的和等于

让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

问题1 观察:三个内角拼成了一个  什么角?

问题2 此实验给我们一个什么启示?

(把三角形的三个内角之和转化为一个平角)

问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

学生回答后,电脑显示图表。

(3)三角形中三个内角之和为定值 ,那么对三角形的其它角还有哪些特殊的关系呢?

问题1 直角三角形中,直角与其它两个锐角有何关系?

问题2 三角形一个外角与它不相邻的两个内角有何关系?

问题3 三角形一个外角与其中的一个不相邻内角有何关系?

其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

3、三角形三个内角关系的定理及推论

通过上面四个例题的分析与讨论,有利于学生基础知识与基本能力的掌握与提高,同时更有利于学生创新意识与创造性思维能力的培养,在练习、讲评等教学环节中,形成师生之间的、学生之间的“双向反馈”是很重要的。

4、变式训练,巩固提高

根据例4 的度数的求法,思考如下问题:

(3)如图5,过D点画AB的平行线MN,与AC、BC交于点M、N,则 的度数多少?

(4)当MN绕着点D旋转过程中, 会有怎样的变化?

提示:变化1 当直线MN与AC、BC的交点仍在线段AC、BC上时,

变化2 当直线MN与AC的交点在线段AC上,与BC的交点在BC的延长线上时,

变化3 当直线MN与AC的交点在线段AC的延长线上,与BC的交点在线段BC上时, 

变化4当直线MN与AC、BC的交点在C点时,

经过这样的变式、发展、学习,不仅使学生巩固了所学的数学知识,也使学生体验了数学的运动变化观,使学生的思维得到了培养。

5、小结

通过设置问题:“本节在知识方面以及在思想方法方面你有怎样的收获?”师生以谈话交流的形式进行小结。强调学生注意:辅助线的作用及运用定理及推论解决问题时,要善于抓住条件与结论的关系。

6、布置作业 

a、书面作业 P43#3

b、上交作业 P42#16、17

思考题:

四 : “三角形内角和的认识”教学反思

机智,开放地吸纳各种信息,善于捕捉教育契机,合理地调控自己的教学行为。
2、教师的教学方式要适应学生的学习。新课程明确倡导动手实践、自主探究、合作交流的学习方式。这就要求教师的角色,应当从过去知识的传授者转变为学生自主性、探究性、合作性学习活动的设计者和组织者。在教学过程中,我给学生设置了一个开放的、面向实际的、富有挑战性的问题情境,让学生独立、自主地去探究验证其他学生已发现的知识,通过实验、操作、表达、交流等活动,经历探究过程,获得知识与能力,掌握解决问题的方法,获得情感体验。我想:只要我们坚持“为学习而设计”、“为学生的发展而教”,那么我们的课堂将会更加生机勃勃、充满智慧的欢乐和创造的快意。
3、让每位学生都有所发展 。这节课我进行了8次课堂巡视,其中4次参与学生的讨论、交流,两次分别对三名学困生进行重点辅导,巡视时关注面较广,目的性明确。但在“个别学生课堂行为表现”的重点观察中,一位学困生在前半节课中共举了两次手,未被我关注,之后再没举过一次手。课后这位学生找到我问我原因。我与他进行了个别谈话,问他为什么后半节课没再举手,回答是:“反正也不会提问到我。”学生的态度似乎有些不以为然,其实蕴含着不满。说明我们教师在课堂中不应忽略个体差异、害怕问题暴露,相反应充分重视、关爱学困生,让每位学生都有所发展。
4、对数学学习的评价要做到既关注学生学习的结果,更要重视他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。对学生的精彩回答应予以热情的肯定,促使学生的思维更加活跃。
5、加强对学生的思维和方法的指导。创造一个好的数学问题情境,提供孩子们理解数学的模型和材料是教学设计活动中的第一步,但是要让学生看到其中所蕴涵的数学观念,作为教师不能让这些数学活动只停留在表面。因此我鼓励儿童进
本文标题:三角形内角和教学反思-《三角形内角和》教学谈
本文地址: http://www.61k.com/1157296.html

61阅读| 精彩专题| 最新文章| 热门文章| 苏ICP备13036349号-1