61阅读

存储器分类-存储器的概念、作用、分类

发布时间:2018-02-28 所属栏目:存储器的基本功能

一 : 存储器的概念、作用、分类

存储器是记忆信息的实体,是数字计算机具备存储数据和信息能力,能够自动连续执行程序,进行广泛的信息处理的重要基础。

1、存储器的概念

(1) 存储器:存储器是计算机硬件系统的记忆设备,用来存放程序(软件)和各种数据。现在计算机硬件系统的核心就是存储器和CPU

(2) DMA:一种可以让存储器与IO设备进行数据存取的方式。设计理念就是为了在IO设备与存储器进行数据存取时不去打扰CPU。

存储器的基本功能 存储器的概念、作用、分类

2、存储器的分类

(1) 按照存储器的介质分类:

1.1 半导体存储器:由半导体组成的存储器称为半导体存储器,半导体的存储器体积小,功率低,存取时间短.但是电源消失时,所存储的数据也会丢失,是一种易失性存储器;

1.2 磁材料存储器:由磁材料做成的存储器称为磁性存储器,在金属或塑料上涂抹一层磁性材料,用来存放数据,特点是非易失即断电后不数据不消失,存取速度比较慢;

1.3 盘存储器:光盘存储器使用激光在磁光材料上进行读取,特点是非易失性,耐用性好,记录密度高。现在多用在计算机系统中用作外部存储。

存储器的基本功能 存储器的概念、作用、分类

(2) 按照存储器的数据存取方式分类:

2.1 随机存储器(Random Access Memory RAM):RAM(随机存储器)是一种可以读可以写的存储器,它的任何一个存储单元的内容都可以随机存取,而且存取的时间与物理位置无关,我们的内存(主存)就是这种RAM(随机存储器);

2.2 只读存储器(Read Only Memory ROM):ROM(只读存储器)是一种只能写入一次原始信息,写入之后,只能对去内部的数据进行读出,而不能随意重新写入新的数据去改变原始信息;

2.3 串行访问数据存储器:在对存储器的存储单元进行读写操作时,必须要按照存储单元的物理位置先后寻址地址,这种存储器就为串行访问存储器。这种存储器在存取数据时,需要按照存储器的存储单元的位置显示进行存取。

(3) 按照其在计算机系统中的作用:

3.1 主存储器(主存):通常指我们所说的内存,它可以直接与CPU交换数据的存储器,特点速度快,容量小,价格高。主存采用半导体制作,所以是易失性存储器;

3.2 辅助存储器(辅存):通常指我们所说的外存,用来存放当前没有使用的程序和数据,它不能直接与CPU交换数据,需要加载到主存。特点速度慢,容量大,价格便宜。辅存属于非易失性存储器;

3.3 缓冲存储器(缓存):主要用到俩个速度不同的部件之中,现在基本用在CPU与主存之间,起到缓存的作用。

存储器的基本功能 存储器的概念、作用、分类

3、存储器的层次

(1) 存储器的层次按照它的3个指标即速度,容量,每位价格进行划分分别是:

寄存器=>缓存=>主存=>磁盘=>光盘

越是上层的存储器它的容量越小,速度越快,每位价格越高,越是下层的存储器容量越大,速度越慢,每位价格越低。

寄存器是CPU中的一个存储器CPU实际上是拿寄存器中的数进行运算和控制,它的速度最快,价格最高。

缓存也被设置到了CPU中。

(2) 缓存与主存主要是为了解决CPU与主存速度不匹配的问题,因为CPU速度要快与主存,而缓存也快与主存,只要将CPU近期要使用的数据调入到缓存中,CPU直接从缓存中获取数据,来提升数据的访问速度,降低CPU的负荷。主存与缓存的数据调动是由硬件自己完成的。

(3) 主存与辅存主要用来解决存储系统的容量问题,辅存比主存速度低,并且不能被CPU之间访问,但它容量大,当CPU需要运行程序时,将辅存的数据调入到主存,CPU在来访问。主存和辅存之间的数据调动由硬件和操作系统共同完成。

存储器的基本功能 存储器的概念、作用、分类

4、主存

功能:主存储器是能由CPU直接编写程序访问的存储器,它存放需要执行的程序与需要处理的数据,只能临时存放数据,不能长久保存数据。

组成:● 存储体(MPS):由存储单元组成(每个单元包含若干个储存元件,每个元件可存一位二进制数)且每个单元有一个编号,称为存储单元地址(地址),通常一个存储单元由8个存储元件组成;● 地址寄存器(MAR):由若干个触发器组成,用来存放访问寄存器的地址,且地址寄存器长度与寄存器容量相匹配(即容量为1K,长度无2^10=1K);● 地址译码器和驱动器● 数据寄存器(MDR):数据寄存器由若干个触发器组成,用来存放存储单元中读出的数据,或暂时存放从数据总线来的即将写入存储单元的数据【数据存储器的宽度(w)应与存储单元长度相匹配】。

存储器的基本功能 存储器的概念、作用、分类

主要技术指标:● 存储容量:一般指存储体所包含的存储单元数量(N);● 存取时间(TA):指存储器从接受命令到读出∕写入数据并稳定在数据寄存器(MDP)输出端;● 存储周期(TMC):两次独立的存取操作之间所需的最短时间,通常TMC比TA长;● 存取速率:单位时间内主存与外部(如CPU)之间交换信息的总位数;● 可靠性:用平均故障间隔时间MTBF来描述,即两次故障之间的平均时间间隔。

5、高速缓冲存储器(缓存):

1)高速缓冲存储器的设计理念:为了解决由于IO设备向主存请求的级别高于CPU向主存请求,也就是说IO设备在使用主存时,CPU要等待IO设备访存,导致 CPU工作效率降低,可以在CPU与主存之间加一级缓存,这样CPU可以从缓存中获取数据,另外主存的速度要低于CPU,缓存也是为了解决这俩个硬件设备 速度不匹配的问题。

2)程序访问的局部性:即程序的数据和指令在主存中是连线存放的,并且有些指令和数据往往被多次调用,循环什么的,这样CPU在访问主存时只要将近期需要使用的数据和指令放到Cache中,就可以在一定时间内一直访问Cache,称缓存命中。

3)缓存的工作原理:将主存和缓存分成若干个块,每个块存储的容量都是相同的,任何时刻都有一些主存的块处在缓存块中,可以将缓存当成主存的一个映射,CPU在读取主存的某个字时都会先去缓存中访问,有二种可能,一是缓存中有当前字,CPU直接访问(CPU与缓存通常一次传送一个字)称为缓存命中;另一种是所需的字不在cache中,此时需要将该字所在的主存整个块一次调入Cache中(缓存与主存是按照字块传送)称为缓存不命中。

4)主存与缓存之间数据的调入是由机器硬件自动完成的,用户编程时使用的只是主存地址,也就是说cache对我们来说是透明的。

5)我们平时在写程序时所说的缓存指的是主存到辅存(或者说是内存到硬盘之间设立一个类似于缓存的区域)来减少磁盘的IO提升性能,而这里的缓存指的是CPU与主存之间的。

6、ROM与RAM

RAM(随机存储器)

可读出,也可写入,随机存取,意味着存取任一单元所需的时间相同,当断电后,存储内容立即消失,称为易失性

ROM(只读存储器)

定义:ROM一旦有了信息,不易改变,结构简单,所以密度比可读写存储器高,具有易失性

分类:● 固定掩模型ROM(不能再修改)● PROM可编程之读存储器(由用户写入,但只允许编程一次)● EPROM可擦除可编程只读存储器(可用紫外线照射擦除里面内容)● E2PROM电擦除可编程只读存储器(由电便可擦除里面内容)

7、辅助存储器(外存):

存储器的基本功能 存储器的概念、作用、分类

(1) 辅存概念与设计理念:辅助存储器主要为了给主存提供程序和数据的输入和用来在计算机脱机时保存所有的计算机数据.属于非易失性存储器,通常辅存也称为外存,由硬磁盘和软磁盘,磁带,光盘等.形成了主辅层次存储器。

(2) 硬磁盘(硬盘):现在计算机采用的辅存多采用硬磁盘(硬盘),即在一组圆形的盘面上涂抹磁性材料。

通过这个硬盘的运作和磁头进行读写,磁头划的一个圈称为磁道,硬盘存取数据时是直接存取的,分为俩部分一是找到相应的磁道,然后是磁头开始读写。

存储器的基本功能 存储器的概念、作用、分类

(3) 硬盘组成:硬盘由磁盘驱动器,磁盘控制器,盘片组成

存储器的基本功能 存储器的概念、作用、分类

磁盘分区表(partition table):

利用参考对照磁柱号码的方式来切割硬盘分区! 在分割表所在的64 bytes容量中,总共分为四组记录区,每组记录区记录了该区段的启始与结束的磁柱号码。

若将硬盘以长条形来看,然后将磁柱以直条图来看,那么那64 bytes的记录区段有点像底下的图示:

存储器的基本功能 存储器的概念、作用、分类

上图中我们假设硬盘只有400个磁柱,共分割成为四个分割槽,第四个分割槽所在为第301到400号磁柱的范围。

由于分割表就只有64 bytes而已,最多只能容纳四笔分割的记录,这四个分割的记录被称为主要(Primary)或延伸(Extended)分割槽。

根据上面的图示与说明,我们可以得到几个重点资讯:

● 其实所谓的『分割』只是针对那个64 bytes的分割表进行配置而已!● 硬盘默认的分割表仅能写入四组分割资讯<主要分割与扩展分配最多可以有四条(硬盘的限制)>;● 这四组分割资讯我们称为主要(Primary)或延伸(Extended)分割槽;● 扩展分配最多只能有一个(操作系统的限制);● 逻辑分割是由扩展分配持续切割出来的分割槽,如果扩展分配被破坏,所有逻辑分割将会被删除;● 能够被格式化后,作为数据存取的分割槽为主要分割与逻辑分割。扩展分配无法格式化;● 分割槽的最小单位为磁柱(cylinder);● 逻辑分割的数量依操作系统而不同,在Linux系统中,IDE硬盘最多有59个逻辑分割(5号到63号),SATA硬盘则有11个逻辑分割(5号到15号);● 当系统要写入磁碟时,一定会参考磁盘分区表,才能针对某个分割槽进行数据的处理。

8、内存与外存的比较:

存储器的基本功能 存储器的概念、作用、分类

二 : 8086/8088 存储器分段概念

  这一节主要讲述8086/8088 存储器分段的概念。[www.61k.com]

目的

  从8086 CPU开始采用了分段的方法管理存储器,只有充分理解存储器分段的概念和存储器逻辑地址和物理地址的关系,才能有助于我们掌握8086/8088汇编语言。

存储器分段的原因

黑剑博客 8086/8088 存储器分段概念

  在此之前,我假设大家都理解存储地址以及大端小端的概念。如上图所示为存储器的示意图。那么为什么要引入分段的概念。

  其实,8086/8088引入存储器的分段是有原因的。我们都知道8086/8088 CPU有20根地址线,这样可以直接寻址的物理地址空间为1M字节(存储单元以字节为单位),范围是00000H至FFFFFH。但是我在前一节介绍中说到8086/8088 CPU的寄存器都是16位,那么在传输地址时显然一次只能传输16位有效地址,也就是只足够访问64K字节地址空间。为了实现寻址1M字节物理空间,8086/8088引入了分段的概念。

存储器分段的概念
  所谓分段,就是可以根据需要把1M字节地址空间划分为若干逻辑段。每个逻辑段必须满足如下两个条件:
   1. 逻辑段的开始地址必须是16的倍数,因为段寄存器长为16位;
   2. 逻辑段的最大长度为64K,因为指针寄存器长为16位。

  那么1M字节地址空间最多可划分成64K个逻辑段,最少也要划分成16个逻辑段。逻辑段与逻辑段可以相连,也可以不相连,还可以部分重叠。

  这种存储器分段的方法不仅有利于实现寻址1M字节空间,而且也十分有利于对1M字节存储空间的管理。如下图所示为存储器逻辑段的一种划分。

黑剑博客 8086/8088 存储器分段概念

存储地址形成
  要访问某个存储单元,根据我们划分的逻辑段,计算存储单元的地址与所在段的起始地址的差值,称段内偏移(简称偏移)。

  在整个1M地址空间中,存储单元的物理地址等于段起始地址加上段内偏移。物理地址计算公式如下所示:

     物理地址 = 段值 * 10H + 段内偏移

  举个例子:用16进制表示的逻辑地址1234:3456H所对应的存储单元的物理地址为12340H+3456H=15796H。

  其中,段值由段寄存器给出,段内偏移可由指令指针IP、堆栈指针SP和其他可作为存储器指针使用的存储器(SI、DI、BX和BP)给出,段内偏移还可以直接用16位数给出。

段寄存器的使用

  当然,段寄存器的使用也是有规定的。在8086/8088 CPU中有四个段寄存器,可以保存四个段值,但这四个段分工不同。如下图所示为段和段寄存器的引用。

黑剑博客 8086/8088 存储器分段概念

  •  在取指令时,CPU会自动引用代码段寄存器CS,再加上由IP所给出的16位段内偏移,得到要取指令的物理地址。
  •  当涉及堆栈操作时,CPU会自动引用堆栈段寄存器SS,再加上由SP所给出的16位段内偏移,得到堆栈操作所需的物理地址。
  •  当段内偏移涉及BP寄存器时,缺省引用的段寄存器也为堆栈段寄存器SS。
  •  在一般数据存取的情况下,则自动选择数据段寄存器DS或附加段寄存器ES,再加上16位偏移,得到存储器操作数的物理地址。此时的16位偏移有多重可能性,取决于指令的寻址方式,下一节将会讲到。

  通常如果整个程序不超过64K字节,那么使用1个64K字节的段就可以了;如果程序的数据区长度超过64K字节,那么就要在两个或多个数据段中存取数据,这只需要改变数据段寄存器内的段值就可以了。最后,附上段寄存器的引用规定表。

黑剑博客 8086/8088 存储器分段概念

三 : 存储卡及分类

数码相机将图像信号转换为数据文件保存在磁介质设备或者光记录介质上。(www.61k.com]如果说数码相机是电脑的主机,那么存储卡相当于电脑的硬盘。存储记忆体除了可以记载图像文件意外,还可以记载其他类型的文件,通过USB和电脑相连,就成了一个移动硬盘。市面上常见的存储介质有CF卡、SD卡、SM、记忆棒和小硬盘。

CF卡:

CF卡(Compact Flash)是1994年由SanDisk最先推出的。CF卡具有PCMCIA-ATA功能,并与之兼容;CF卡重量只有14g,仅纸板火柴般大小(43mm x 36m x m3.3mm),是一种固态产品,也就是工作时没有运动部件。CF卡采用闪存(flash)技术,是一种稳定的存储解决方案,不需要电池来维持其中存储的数据。对所保存的数据来说,CF卡比传统的磁盘驱动器安全性和保护性都更高;比传统的磁盘驱动器及Ⅲ型PC卡的可靠性高5到10倍,而且CF卡的用电量仅为小型磁盘驱动器的5%。CF卡使用3.3V到5V之间的电压工作(包括3.3V或5V)。这些优异的条件使得大多数数码相机选择CF卡作为其首选存储介质。

存储卡 存储卡及分类

CF卡作为世界范围内的存储行业标准,保证CF产品的兼容,保证CF卡的向后兼容性;随着CF卡越来越被广泛应用,各厂商积极提高CF卡的技术,促进新一代体小质轻、低能耗先进移动设备的推出,进而提高工作效率。CFA总部在加拿大的Palo Alto,其成员有权免费得到CF卡、CF商标和CF技术详情。CFA成员包括3COM,佳能、柯达、惠普、日立、IBM、松下、摩托罗拉、NEC、SanDisk、精工(爱普生)和Socket Communications等120多个。而且其中的主要数码相机生产研发厂商已经成立了一个专门组织,从事于CF产品的开发。 CF卡有以下缺点:

1、容量有限。虽然容量在成倍提高,但仍赶不上数码相机的像素发展。目前的5百万像素以上产品已经是流行的高端产品最低规格,而民用主流市场也达到3百万像素级别。普通民用的JPEG压缩格式下,容量尚可,但是专业级的TIFF(RAW)格式文件还是放不下几张图像数据。

2、体积较大。与其他种类的存储卡相比,CF卡的体积略微偏大,这也限制了使用CF卡的数码相机体积,所以现下流行的超薄数码相机大多放弃了CF卡,而改用体积更为小巧的SD卡。

存储卡 存储卡及分类

3、性能限制。(www.61k.com]CF卡的工作温度一般是0-40摄氏度。因此0度以下的环境中,数码相机基本可以说变成了“废物”。即使是专业机也不能幸免。虽然目前军用的CF卡耐寒能力达到-40摄氏度,可是什么时候普及,价格什么时候跌到普通老百姓可以承受的地步还不得而知。

目前世界上最大的CF型卡容量已经达640M。一般市场上常见的是8MB、16MB、32MB、64MB、128MB、256MB等几种(128MB以上的为Ⅱ型)。

SM卡:

SM(Smart Media)卡是由东芝公司在1995年11月发布的Flash Memory存贮卡,三星公司在1996年购买了生产和销售许可,这两家公司成为主要的SM卡厂商。为了推动

SmartMedia成为工业标准,1996年4月成立了SSFDC论坛(SSFDC即Solid State Floppy Disk Card,实际上最开始时SmartMedia被称为SSFDC,1996年6月改名为SmartMedia,并成为东芝的注册商标)。SSFDC论坛有超过150个成员,同样包括不少大厂商,如Sony、Sharp、JVC、Philips、NEC、SanDisk等厂商。SmartMedia卡也是市场上常见的微存贮卡,一度在MP3播放器上非常的流行。

存储卡 存储卡及分类

SM卡的尺寸为37mm×45mm×0.76mm(图1),由于SM卡本身没有控制电路,而且由塑胶制成(被分成了许多薄片),因此SM卡的体积小非常轻薄,在2002年以前被广泛应用于数码产品当中,比如奥林巴斯的老款数码相机以及富士的老款数码相机多采用SM存储卡。但由于SM卡的控制电路是集成在数码产品当中(比如数码相机),这使得数码相机的兼容

性容易受到影响。

目前新推出的数码相机中都已经没有采用SM存储卡的产品了。

SD卡:

SD卡(Secure Digital Memory Card)是一种基于半导体快闪记忆器的新一代记忆设备。SD卡由日本松下、东芝及美国SanDisk公司于1999年8月共同开发研制。大小犹如一张邮票的SD记忆卡,重量只有2克,但却拥有高记忆容量、快速数据传输率、极大的移动灵活性以及很好的安全性。

存储卡 存储卡及分类

存储卡 存储卡及分类

SD卡在24mm×32mm×2.1mm的体积内结合了SanDisk快闪记忆卡控制与MLC

(Multilevel Cell)技术和Toshiba(东芝)0.16u及0.13u的NAND技术,通过9针的接口界面与专门的驱动器相连接,不需要额外的电源来保持其上记忆的信息。[www.61k.com)而且它是一体化固体介质,没有任何移动部分,所以不用担心机械运动的损坏。

SD卡的结构能保证数字文件传送的安全性,也很容易重新格式化,所以有着广泛的应用领域,音乐、电影、新闻等多媒体文件都可以方便地保存到SD卡中。因此不少数码相机也开始支持SD卡。

很多存储卡公司都有开发SD卡,松下是目前SD卡最主要的生产厂家,2000年时 SD卡容量已经从8MB到64MB分为4个不同的等级来满足不同场合的需要,数据传输率为2MB/s。到2001年末单卡容量已经高达512MB,数据传输率也提升到10MB/s。松下计划到2003年推出容量达到1GB,数据传输率为20MB/s的高性能储存卡,到2005年容量有望达到4GB。看来另辟蹊径的SD卡有望在数码相机存储介质方面打开另外一片天。

记忆棒:

索尼一向独来独往的性格造就了记忆棒的诞生。这种口香糖型的存储设备几乎可以在所有的索尼影音产品上通用。记忆棒(Memory Stick)外形轻巧,并拥有全面多元化的功能。它的极高兼容性和前所未有的“通用储存媒体”(Universal Media)概念,为未来高科技个人电脑、电视、电话、数码照相机、摄像机和便携式个人视听器材提供新一代更高速、更大容量的数字信息储存、交换媒体。

存储卡 存储卡及分类

存储卡 存储卡及分类

除了外型小巧、具有极高稳定性和版权保护功能以及方便地使用于各种记忆棒系列产品等特点外,记忆棒的优势还在于索尼推出的大量利用该项技术的产品,如DV摄像机、数码相机、VAIO个人电脑、彩色打印机、Walkman、IC录音机、LCD电视等,而PC卡转换器、

3.5英寸软盘转换器、并行出口转换器和USB读写器等全线附件使得记忆棒可轻松实现与PC及苹果机的连接。(www.61k.com)

记忆棒推出后,三星、爱华、三洋、卡西欧、富士通、奥林巴斯、夏普等一系列公司已表示了对此格式的支持。索尼公司目前还在寻求家用电子行业和IT行业对记忆棒格式的认同。 Sony将在今后把更多代表记忆棒最新发展的产品介绍到国内市场。

记忆棒的缺点一是只能在索尼数码相机中使用,二是容量尚不够大

微型硬盘:

MICRoDRIVE是美国IBM公司推出的大容量存储介质,中文名称叫微型硬盘。由于数码相机缺少大容量的存储介质,曾一度阻碍了数码相机的发展,IBM公司看到了这方面的市场空白,结合自己在硬盘制造方面的优势,果断地推出了与CF卡Ⅱ型接口一致的微型硬盘,刚推出时容量便高达340MB,经过一年多的发展,容量已达到1G,使数码相机以AVI格式拍摄动态影像时不必再用秒计算了。当然就目前的价格来看它还是比较贵的,不过就每MB性价比来看,它要比SM卡、CF卡和记忆棒划算多了。另外从理论上讲,只要支持CF卡Ⅱ型接口的数码相机也支持微型硬盘,但实际上有些机型如爱普生PC-3000虽然采用Ⅱ型接口,却不支持微型硬盘。目前支持微型硬盘的数码相机有卡西欧QV3000EX、佳能PoWERShot S20、G1等机型。

存储卡 存储卡及分类

存储卡 存储卡及分类

MMC卡:

MMC(MultiMediaCard,多媒体存储卡)由SanDisk和Siemens公司在1997年发起,与传统的移动存储卡相比,其最明显的外在特征是尺寸更加微缩——只有普通的邮票大小(是CF卡尺寸的1/5左右),外形尺寸只有32mm×24mm×1.4mm,而其重量不超过2g。(www.61k.com)这使其成为世界上最小的半导体移动存储卡,它对于越来越追求便携性的各类手持设备形成强有力的支持。

存储卡 存储卡及分类

MMC在设计之初是瞄准手机和寻呼机市场,之后因其小尺寸等独特优势而迅速被引进更多的应用领域,如数码相机、PDA、MP3播放器、笔记本电脑、便携式游戏机、数码摄像机

乃至手持式GPS等。

另外,由于采用更低的工作电压,驱动电压为2.7-3.6V。MMC比CF和SM等上代产品更加省电,目前常见的容量为64MB/128MB,ATP Electrionics公司已经率先推出了1GB的高容量MMC卡。

--

四 : 存储器分类

内存的种类是非常多的,从能否写入的角度来分,就可以分为RAM(随机存取存储器)和ROM(只读存储器)这两大类。每一类别里面有分别有许多种类的内存。

一、RAM(Random Access Memory,随机存取存储器)

RAM的特点是:电脑开机时,操作系统和应用程序的所有正在运行的数据和程序都会放置其中,并且随时可以对存放在里面的数据进行修改和存取。它的工作需要由持续的电力提供,一旦系统断电,存放在里面的所有数据和程序都会自动清空掉,并且再也无法恢复。

根据组成元件的不同,RAM内存又分为以下十八种:

01.DRAM(Dynamic RAM,动态随机存取存储器):

这是最普通的RAM,一个电子管与一个电容器组成一个位存储单元,DRAM将每个内存位作为一个电荷保存在位存储单元中,用电容的充放电来做储存动作,但因电容本身有漏电问题,因此必须每几微秒就要刷新一次,否则数据会丢失。存取时间和放电时间一致,约为2~4ms。因为成本比较便宜,通常都用作计算机内的主存储器。

02.SRAM(Static RAM,静态随机存取存储器)

静态,指的是内存里面的数据可以长驻其中而不需要随时进行存取。每6颗电子管组成一个位存储单元,因为没有电容器,因此无须不断充电即可正常运作,因此它可以比一般的动态随机处理内存处理速度更快更稳定,往往用来做高速缓存。

03.VRAM(Video RAM,视频内存)

它的主要功能是将显卡的视频数据输出到数模转换器中,有效降低绘图显示芯片的工作负担。它采用双数据口设计,其中一个数据口是并行式的数据输出入口,另一个是串行式的数据输出口。多用于高级显卡中的高档内存。

04.FPM DRAM(Fast Page Mode DRAM,快速页切换模式动态随机存取存储器)

改良版的DRAM,大多数为72Pin或30Pin的模块。传统的DRAM在存取一个BIT的数据时,必须送出行地址和列地址各一次才能读写数据。而FRM DRAM在触发了行地址后,如果CPU需要的地址在同一行内,则可以连续输出列地址

而不必再输出行地址了。由于一般的程序和数据在内存中排列的地址是连续的,这种情况下输出行地址后连续输出列地址就可以得到所需要的数据。FPM将记忆体内部隔成许多页数Pages,从512B到数KB不等,在读取一连续区域内的数据时,就可以通过快速页切换模式来直接读取各page内的资料,从而大大提高读取速度。在96年以前,在486时代和PENTIUM时代的初期,FPM DRAM被大量使用。

05.EDO DRAM(Extended Data Out DRAM,延伸数据输出动态随机存取存储器)

这是继FPM之后出现的一种存储器,一般为72Pin、168Pin的模块。它不需要像FPM DRAM那样在存取每一BIT 数据时必须输出行地址和列地址并使其稳定一段时间,然后才能读写有效的数据,而下一个BIT的地址必须等待这次读写操作完成才能输出。因此它可以大大缩短等待输出地址的时间,其存取速度一般比FPM模式快15%左右。它一般应用于中档以下的Pentium主板标准内存,后期的486系统开始支持EDO DRAM,到96年后期,EDO DRAM开始执行。。 06.BEDO DRAM(Burst Extended Data Out DRAM,爆发式延伸数据输出动态随机存取存储器)

这是改良型的EDO DRAM,是由美光公司提出的,它在芯片上增加了一个地址计数器来追踪下一个地址。它是突发式的读取方式,也就是当一个数据地址被送出后,剩下的三个数据每一个都只需要一个周期就能读取,因此一次可以存取多组数据,速度比EDO DRAM快。但支持BEDO DRAM内存的主板可谓少之又少,只有极少几款提供支持(如VIA APOLLO VP2),因此很快就被DRAM取代了。

07.MDRAM(Multi-Bank DRAM,多插槽动态随机存取存储器)

MoSys公司提出的一种内存规格,其内部分成数个类别不同的小储存库 (BANK),也即由数个属立的小单位矩阵所构成,每个储存库之间以高于外部的资料速度相互连接,一般应用于高速显示卡或加速卡中,也有少数主机板用于L2高速缓存中。

08.WRAM(Window RAM,窗口随机存取存储器)

韩国Samsung公司开发的内存模式,是VRAM内存的改良版,不同之处是它的控制线路有一、二十组的输入/输出控制器,并采用EDO的资料存取模式,因此速度相对较快,另外还提供了区块搬移功能(BitBlt),可应用于专业绘图工作上。

09.RDRAM(Rambus DRAM,高频动态随机存取存储器)

Rambus公司独立设计完成的一种内存模式,速度一般可以达到

500~530MB/s,是DRAM的10倍以上。但使用该内存后内存控制器需要作相当大的改变,因此它们一般应用于专业的图形加速适配卡或者电视游戏机的视频内存中。

10.SDRAM(Synchronous DRAM,同步动态随机存取存储器)

这是一种与CPU实现外频Clock同步的内存模式,一般都采用168Pin的内存模组,工作电压为3.3V。 所谓clock同步是指内存能够与CPU同步存取资料,这样可以取消等待周期,减少数据传输的延迟,因此可提升计算机的性能和效率。

11.SGRAM(Synchronous Graphics RAM,同步绘图随机存取存储器)

SDRAM的改良版,它以区块Block,即每32bit为基本存取单位,个别地取回或修改存取的资料,减少内存整体读写的次数,另外还针对绘图需要而增加了绘图控制器,并提供区块搬移功能(BitBlt),效率明显高于SDRAM。

12.SB SRAM(Synchronous Burst SRAM,同步爆发式静态随机存取存储器)

一般的SRAM是非同步的,为了适应CPU越来越快的速度,需要使它的工作时脉变得与系统同步,这就是SB SRAM产生的原因。

13.PB SRAM(Pipeline Burst SRAM,管线爆发式静态随机存取存储器) CPU外频速度的迅猛提升对与其相搭配的内存提出了更高的要求,管线爆发式SRAM取代同步爆发式SRAM成为必然的选择,因为它可以有效地延长存取时脉,从而有效提高访问速度。

14.DDR SDRAM(Double Data Rate二倍速率同步动态随机存取存储器)

作为SDRAM的换代产品,它具有两大特点:其一,速度比SDRAM有一倍的提高;其二,采用了DLL(Delay Locked Loop:延时锁定回路)提供一个数据滤波信号。这是目前内存市场上的主流模式。

15.SLDRAM (Synchronize Link,同步链环动态随机存取存储器)

这是一种扩展型SDRAM结构内存,在增加了更先进同步电路的同时,还改进了逻辑控制电路,不过由于技术显示,投入实用的难度不小。

16.CDRAM(CACHED DRAM,同步缓存动态随机存取存储器)

这是三菱电气公司首先研制的专利技术,它是在DRAM芯片的外部插针和内部DRAM之间插入一个SRAM作为二级CACHE使用。当前,几乎所有的CPU都装有一级CACHE来提高效率,随着CPU时钟频率的成倍提高,CACHE不被选中对系统性能产生的影响将会越来越大,而CACHE DRAM所提供的二级

CACHE正好用以补充CPU一级CACHE之不足,因此能极大地提高CPU效率。

17.DDRII (Double Data Rate Synchronous DRAM,第二代同步双倍速率动态随机存取存储器)

DDRII 是DDR原有的SLDRAM联盟于1999年解散后将既有的研发成果与DDR整合之后的未来新标准。DDRII的详细规格目前尚未确定。

18.DRDRAM (Direct Rambus DRAM)

是下一代的主流内存标准之一,由Rambus 公司所设计发展出来,是将所有的接脚都连结到一个共同的Bus,这样不但可以减少控制器的体积,已可以增加资料传送的效率。

二、ROM(READ Only Memory,只读存储器)

ROM是线路最简单半导体电路,通过掩模工艺,一次性制造,在元件正常工作的情况下,其中的代码与数据将永久保存,并且不能够进行修改。一般应用于PC系统的程序码、主机板上的 BIOS (基本输入/输出系统Basic Input/Output System)等。它的读取速度比RAM慢很多。

根据组成元件的不同,ROM内存又分为以下五种:

1.MASK ROM(掩模型只读存储器)

制造商为了大量生产ROM内存,需要先制作一颗有原始数据的ROM或EPROM作为样本,然后再大量复制,这一样本就是MASK ROM,而烧录在MASK ROM中的资料永远无法做修改。它的成本比较低。

2.PROM(Programmable ROM,可编程只读存储器)

这是一种可以用刻录机将资料写入的ROM内存,但只能写入一次,所以也被称为“一次可编程只读存储器”(One Time Progarmming ROM,OTP-ROM)。PROM在出厂时,存储的内容全为1,用户可以根据需要将其中的某些单元写入数据0(部分的PROM在出厂时数据全为0,则用户可以将其中的部分单元写入

1), 以实现对其“编程”的目的。

3.EPROM(Erasable Programmable,可擦可编程只读存储器)

这是一种具有可擦除功能,擦除后即可进行再编程的ROM内存,写入前必须先把里面的内容用紫外线照射它的IC卡上的透明视窗的方式来清除掉。这一类芯片比较容易识别,其封装中包含有“石英玻璃窗”,一个编程后的EPROM芯片的“石英玻璃窗”一般使用黑色不干胶纸盖住, 以防止遭到阳光直射。

4.EEPROM(Electrically Erasable Programmable,电可擦可编程只读存储器)

功能与使用方式与EPROM一样,不同之处是清除数据的方式,它是以约20V的电压来进行清除的。另外它还可以用电信号进行数据写入。这类ROM内存多应用于即插即用(PnP)接口中。

5.Flash Memory(快闪存储器)

这是一种可以直接在主机板上修改内容而不需要将IC拔下的内存,当电源关掉后储存在里面的资料并不会流失掉,在写入资料时必须先将原本的资料清除掉,然后才能再写入新的资料,缺点为写入资料的速度太慢。

五 : 存储器的分类

内存是存储器的一种。存储器是计算机的重要组成部分,按其用途可分为主存储器和辅助存储器,主存储器又称内存储器(简称内存),辅助存储器又称外存储器。外存储器通常是磁性介质和光盘,能长期保存信息,并且不依赖于电来保存信息。

内存的分类

内存的物理实质是一组或多组具备数据输入输出和数据存储功能的集成电路。内存按存储信息的功能可分为只读存储器ROM(Read Only Memory)、可改写的只读存储器EPROM(Erasable Progrmmable ROM)和随机存储器RAM(Random Access Memory)。ROM中的信息只能被读出,而不能被操作者修改或删除,故一般用于存放固定的程序。EPROM和一般的ROM不同点在于它可以用特殊的装置擦除和重写它的内容,一般用于软件的开发过程。RAM就是我们平常所说的内存,主要用来存放各种现场的输入、输出数据,中间计算结果,以及与外部存储器交换信息。它的存储单元根据具体需要可以读出,也可以写入或改写。一旦关闭电源或发生断电,其中的数据就会丢失。现在的RAM多为MOS型半导体电路,它分为静态和动态两种。静态RAM是靠双稳态触发器来记忆信息的;动态RAM是靠MOS电路中的栅级电容来记忆信息的。由于电容上的电荷会泄漏,需要定时给予补充,所以动态RAM需要设置刷新电路。但动态RAM比静态RAM集成度高、功耗低,从而成本也低,适于作大容量存储器。所以主内存通常采用动态RAM,而高速缓冲存储器(Cache)则使用静态RAM。另外,内存还应用于显卡,声卡及CMOS等设备中,用于充当设备缓存或保存固定的程序及数据。

动态RAM按制造工艺的不同,又可分为动态随机存储器(Dynamic RAM)、扩展数据输出随机存储器(Extened Data Out RAM)和同步动态随机存储器(Sysnchromized Dynamic RAM)。
本文标题:存储器分类-存储器的概念、作用、分类
本文地址: http://www.61k.com/1146344.html

61阅读| 精彩专题| 最新文章| 热门文章| 苏ICP备13036349号-1