一 : 蚕丝蛋白:蚕丝蛋白-概述,蚕丝蛋白-蚕丝蛋白
蚕丝蛋白(Fibroin;シルクタンパク )又名:丝素蛋白。丝素蛋白,是从蚕丝中提取的天然高分子纤维蛋白,含量约占蚕丝的70%~80%,含有18种氨基酸,其中甘氨酸(gly)、丙氨酸(ala)和丝氨酸(ser)约占总组成的80%以上。2014年11月20日,西南大学家蚕基因组生物学国家重点实验室通过敲除Fib-H基因获得空丝腺,蚕宝宝吐出人工合成蚕丝蛋白,这在国内外尚属首次。
蚕丝蛋白_蚕丝蛋白 -概述
丝素本身具有良好的机械性能和理化性质,如良好的柔韧性和抗拉伸强度、透气透湿性、缓释性等,而且经过不同处理可以得到不同的形态,如纤维、溶液、粉、膜以及凝胶等。
蚕丝蛋白_蚕丝蛋白 -蚕丝蛋白
天然蚕丝蛋白水解液中的有效成份分层释放, 10秒钟渗透肌肤真皮层,有效抑制黑色素生成,控制色素。促进胶原蛋白合成,活化细胞,提高细胞的免疫力,促进肌肤的新陈代谢率,帮助修补受损的皮肤组织,令暗哑疲倦的肌肤再添生机,从而在极短时间内还原美白、光泽的肌肤。
蚕丝蛋白早在唐代孙思邈《千金要方》、宋代王怀隐《太平圣惠方》、明代李时珍《本草纲目》等医籍中均有记载,蚕丝的天然亲肤力十分明显,由于蚕丝中含有多种氨基酸和蛋白质,含有的蛋白质大大高于珍珠,其中含氮量比珍珠高几十倍,主要氨基酸含量高10倍以上,天然蚕丝加工提 炼成天然蚕丝蛋白水解液。蚕丝蛋白水解液的渗透力极强,涂于皮肤10秒钟左右,蚕丝蛋白就能渗入肌肤真皮层,发挥保湿作用,其透过角质层 与皮肤表皮细胞结合,并被细胞作为营养吸收,参与和促进细胞代谢,为其新陈代谢提供必需的养分,还能修复已损伤的皮肤。促进肌肤细胞 再生的作用。实验进1步证实,蚕丝蛋白对黑色素生成的抑制更为有效,丝缩氨基酸还能抑制皮肤中酪氨酸酶的活性,从而抑制酪氨酸酶生成黑色素,有内而外改善暗淡肤色。富含多种氨基酸和小分子蛋白质,极易为肌肤吸收,提供肌肤美白所需的营养成分。肌肤逐渐恢复并保持健康白 皙,呈现如丝般柔滑细腻,焕发动人光彩,倍增魅力! 进1步更实现了女人希望皮肤白皙的梦想.
蚕丝蛋白_蚕丝蛋白 -护肤五大功效
蚕丝蛋白纤维是1种新型的功能性纤维,具有其它纤维及加工品无可替代的独特性能和无可比拟的旺盛生命力。经过染织而成的各种色彩绚丽的蚕丝蛋白面料,更易缝制加工成各类高级成衣及运用于高档家纺市场。蚕丝蛋白纤维所具有的特别功效有以下五点:
第一,舒适感。蚕丝蛋白纤维与人体有极好的生物相容性,加之表面光滑,手感柔软,其对人体的摩擦刺激系数较其他各类纤维要低的多。因此,当我们的娇嫩肌肤与滑爽细腻的蚕丝蛋白纤维邂逅时,它以其特有的柔顺质感,依着人体的曲线,体贴而又安全地呵护着我们的每一寸肌肤。
第二,吸、放湿性好。蚕丝蛋白纤维富集了许多胺基(-CHNH)、氨基(-NH2)等亲水性基团,又由于其多孔性,易于水分子扩散,所以它能在空气中吸收水分或散发水分,并保持一定的水分。在正常气温下,它可以帮助皮肤保有一定的水分,不使皮肤过于干燥;在夏季穿着,又可将人体排出的汗水及热量迅速散发,使人感到凉爽无比。正是由于这种性能,使蚕丝蛋白纤维更适合于与人体皮肤直接接触。
第三,光泽度好。蚕丝蛋白纤维中含有的蚕丝蛋白,是从蚕儿吐出的雪白的蚕丝中提取,为纯天然产品,织成的面料含有丝般光泽,穿上之后光彩照人。
第四,抗紫外线,热晒牢度好。蚕丝蛋白中的色氨酸、酪氨酸能吸收紫外线,因此蚕丝蛋白纤维具有较好的抗紫外线功能。而由于载体是粘胶纤维,以及研发过程中的采用的一些高新技术使得蚕丝蛋白纤维在抗紫外线的前提下,热晒牢度较好,不会因为热晒而掉色,使面料颜色发生改变,从而降低美观效果。
第五,上色鲜艳程度好,抗皱性好。蚕丝蛋白纤维在纺纱染整性能上,以活性中性染料为佳,适用于各种纺织产品的生产加工。其织成的面料抗皱性也明显好于真丝,蚕丝蛋白纤维织物具有效好的物理机械性能和高稳定性,织物湿态下变形小,具有较好的耐磨性。
1、 深层美白:深入肌肤底层,从根本上美白肌肤而无副作用;
2、 长效保湿:NMF因子十倍于常规植物或化学保湿剂,给肌肤持续高效补充水分;
3、 滋养调理:渗透力强, 为肌肤提供必需的养分, 促进细胞代谢,改善肤质.
4、 抗衰活颜:能激活肌肤细胞,改善微循环,抗衰除皱,活颜悦色;
5、 抗氧化:有效抵抗外部污染,保持皮肤PH值平衡,增强肌肤免疫力
蚕丝蛋白_蚕丝蛋白 -工艺流程
1.蚕种场削口茧及下脚丝一丝素蛋白一水解一过滤提纯一滤液pH测试调整一浓缩一灭菌一成品。
①削口茧、下脚丝去杂脱胶:即把蚕种场制种的削口茧壳内的脱皮或缫丝厂的下脚丝中的杂质剔除,然后在一定浓度的弱碱溶液中煮沸半小时,取出茧丝用水漂洗几次拧干(脱胶)。
②水解:严格控制反应的温度、浴比、时间、溶剂浓度等条件,掌握至多肽的形式终止水解。
③过滤提纯:滤去没有完全水解的固体物质及杂质。
蚕丝蛋白④pH调整:用pH调节剂调整pH在6.5~7.0左右。
⑤浓缩:把pH调整后的水解液上柱在薄膜浓缩器上进行浓缩。
⑥灭菌:(浓缩后的水解蛋白液如在食品上应用用酶制剂继续酶解,控制分子量在300~800左右中止,然后灭菌。)加入微量防腐剂,以防霉菌的滋生。
2.蚕丝蛋白丝素肽产品技术、质量指标
丝素肽又名丝多缩氨酸(SILK Polypeplide),其多肽键的基本结构为其中Rl、R2……R。为氨基酸侧基。丝素肽含有17种氨基酸,其中人体所需的氨基酸几乎具备,特别是人体皮肤、毛发十分需要的营养氨基酸(甘氨酸、丙氨酸、丝氨酸、酪氨酸)其含量占到氨基酸总量的80%以上,这是其他水解蛋白所不可及的。
2.1技术指标:①外观形状:淡黄色透明液体,无特异气味,易溶于水。②双缩脲反应为阳性,紫外吸收光谱在波长200~240nm处有强吸收峰。③pH值6~7。④比重(d 2。o)1.000~1.050。⑨蛋白质含量:>/14%。⑥氨基酸:共十七种,每ml中含87mg以上。⑦灰分:1%以下。⑧重金属汞、砷、铅分别在1ppm以下。⑨细菌总数(个/m1)≤10。⑩粪大肠杆菌、绿脓杆菌、金黄色葡萄球菌均不得检出。
2.2质量指标:丝素肽是由天然蚕丝经特殊工艺提取而成,因此,氨基酸组成与含量是衡量产品质量的重要指标之一;而丝素肽分子量的大小与护肤功效的发挥又有着密切的联系. []丝素蛋白材料改性的研究进展丝素蛋白是1种从蚕丝中提取的蛋白质,具有很好的生物相容性,能制备成膜、凝胶、微胶囊等多种形态的材料,由于它独特的理化性能,目前丝素蛋白材料在生物医学材料领域被广泛的研究,如固定化酶材料、细胞培养基质、药物缓释剂、人工器官等等。为了提高丝素蛋白的性能,使其更好地应用于生物材料领域,近年来,国内外学者通过不同方法对丝素蛋白进行了化学修饰,取得了一些新的研究成果。本文概述了丝素蛋白材料改性在提高丝素蛋白材料的力学性能、热稳定性等理化性质;改变丝素蛋白材料对药物的释放速度;赋予丝素蛋白材料抗血凝性、对细胞生长的调控性等方面的研究报道。
1提高丝素蛋白材料的力学性能
丝素膜是被研究得最早和最深入的丝素材料,它是由丝素溶液干燥而得。经不溶化处理后的丝素膜脆性,是丝素膜的最大缺点。造成不溶化处理后的丝素膜脆性的主要原因是:丝素蛋白质大分子肽链上的肽键—CO—NH—中的C—N的键长为0.132nm,比C—N单键的键长0.147nm要短一点,比C=N双键的键长0.127nm要长些,使肽链具有部分双键的性质,刚性较大,影响了丝素蛋白质大分子主链的柔顺性。在经不溶化处理过程中,丝素蛋白的结构会发生从任意卷曲到β结构的转变。在丝素蛋白发生结构转变后,侧链与侧链间、侧链与主链间以及分子与分子之间可形成大量的氢键结合,产生大量的次级交联点,使丝素蛋白质大分子更难以运动,致使丝素膜的柔软性、伸长和弹性都较差。不少研究通过共混、接枝、交联等方法,以提高和改良丝素膜的力学性能。
1.1共混改性
Freddi等曾报道过丝素蛋白/纤维素共混膜的性能。纤维素的加入可以有效地改变共混膜的力学性能。拉伸断裂强度随着纤维素的含量从20%起呈线性增加,断裂伸长率则在20%~40%间急速增加,而后趋于缓和。含40%纤维素共混膜的柔韧度大约是纯丝素膜的10倍。共混膜柔韧度的提高由多种因素促成,如纤维素的力学性能的影响;共混膜的吸湿性纯丝素膜强,含水率的提高有利于丝素膜的柔韧度提高;相邻丝素蛋白链和纤维素链在无定形区内的相互作用产生的影响等。
李明忠等曾报道过关于丝素/聚氨酯共混膜的力学性能的研究。结果表明,随着聚氨酯所占比例的提高,丝素/聚氨酯共混膜的断裂伸长率明显增大;当聚氨酯所占比例大于40%时,断裂伸长率增长速度明显加快。当共混比例为50∶50时,断裂伸长率从60.2%提高到226.2%。聚氨酯阻止了丝素蛋白质大分子链段间产生过多的氢键结合,降低了丝素的结晶度,增加了可自由伸展链段,加上聚氨酯主链本身具备很好的柔顺性,所以共混膜的柔软性、弹性明显比纯丝素膜好。
最近,美国学者也曾做过这方面的实验。聚乙烯氧化物(PEO)是1种具有很好生物相容性的聚合体。他们在高浓缩的丝素溶液(8%)中加入不同比例的PEO溶液制成共混膜,发现加入2%的PEO可以提高膜的强度,而在其他浓度下膜的强度则降低。这种现象可以用相分离来解释。PEO和丝素蛋白2种聚合体发生相分离,阻止了丝素蛋白相内的相互作用。
当PEO含量达40%时,共混膜的断裂伸长率可从原来的1.9%增加到10.9%,因此,PEO的加入有助于丝素蛋白柔韧性的提高。另外,研究还发现PEO能方便地从共混膜上萃取,因此,很容易控制膜的多孔性和表面粗糙程度。
王朝霞等人研究了丝素/聚乙烯基吡咯烷酮(PVP)共混膜的制备方法和性能。结果表明,PVP与丝素蛋白共混后,可使共混膜增加伸长率、吸湿性以及透气性,改善了丝素创面保护膜的性能和应用效果。共混膜的强度随PVP含量的增加而有所降低。这是因为PVP是完全非晶态结构,其分子呈无规卷曲状,故PVP的加入使共混膜的强度降低。共混膜的伸长率开始随PVP的比例增加而下降,PVP/SF为2∶8时,伸长率较小,只有13%左右。而后伸长率又逐渐提高。PVP/SF为3∶7左右时,伸长率最大,可达18%以上。
关于丝素共混膜的研究还有丝素蛋白/海藻酸钠共混膜,丝素/明胶等等,都不同程度地增强了丝素膜的强度和弹性。
1.2化学接枝改性
20世纪80~90年代,开展了较多的对丝素蛋白的接枝改性研究。刘剑洪等曾用四价铈盐作引发剂,引发丝素蛋白纤维接枝紫外吸收剂——2-羟基-4-丙烯酰氧二苯酮(HAOBP),虽然改善了丝素蛋白纤维的紫外稳定性能,且力学性能却大幅度地下降。为了解决这一问题,刘剑洪继续采用“无引发剂聚合”法在丝素蛋白纤维表面接枝HAOBP的可行性。结果发现,这种接枝聚合方法是1种更为有效的改性方法。接枝0.6%HAOBP的丝素蛋白纤维,其热稳定性及紫外稳定性均得到了显着的改善,但力学性能没有下降。
Tsukada等曾研究了甲基丙烯腈接枝丝素纤维后物理性能的改变。结果表明,随着接枝物甲基丙烯腈的加入,丝素纤维的拉伸模量有所降低,这说明了接枝反应使得丝素纤维变得更加柔软且有弹性。
除了家蚕丝的化学接枝外,还有其他蚕丝的接枝共聚。Tsukada等研究了酸酐对柞蚕丝的化学修饰。柞蚕丝经LiSCN预处理后,与酸酐发生酰胺化反应。有意思的是,无论LiSCN预处理还是酰胺化修饰,共聚物的物理性能和热行为几乎没有发生变化,但是预处理后含水率有所增加,而酰胺化修饰后含水率却线性下降。柞蚕丝的这些性能为聚合反应提供较宽的适用范围,使得柞蚕丝很可能成为1种生物材料。
1.3化学交联卢神州等以环氧氯丙烷和聚乙二醇(PEG)为原料,在碱性催化下反应得到聚乙二醇缩水甘油醚(PEGO),作为制备丝素蛋白膜的交联剂。随PGE含量的增加,膜的拉伸断裂强度和杨氏模量减小,断裂伸长率增大、机械性能比纯丝素膜有了明显的提高 。闵思佳等发现用二缩水甘油基乙醚作为交联剂所制备的丝素蛋白质凝胶(CFG)具有良好的强度和柔韧性。根据制作条件可达压缩强度大于100g/mm2,压缩变形率大于60%。另外,材料的力学强度跟丝素水溶液的浓度有关。4%(wt)的丝素蛋白质水溶液的各种凝胶的强度和变形率均小于7%(wt)浓度的各种凝胶。这是因为丝素蛋白质浓度低时,形成的三维网目的结合点稀疏,因此,凝胶强度较低。要得到高强度CFG,除了合适的交联剂等外,还需有合适的丝素水溶液浓度。
2提高丝素蛋白材料的热性能
聚丙烯酰胺(PAAm)是1种水溶性聚合物,目前,它在生物医学和制药上被用作水凝胶,与血液有良好的相容性。因此,丝素蛋白与PAAm共混膜的性能也广受学者的关注。Freddi等曾报道了丝素/聚丙烯酰胺共混膜的结构和物理性能。通过测定混合前后热能的变化来分析,结果表明PAAm的加入,提高了丝素蛋白的热稳定性。即使PAAm含量很低(小于25%)时,膜断裂至少在300℃(比纯丝素蛋白高出100℃)。高温下,丝素蛋白的动力学损耗系数峰发生了很大的变化,这些都归因于PAAm链的导入增强了丝素链的分子运动所造成的。
3调控丝素蛋白材料的药物释放速度
闵思佳等曾测试了酰胺化修饰丝素材料对离子型化合物的吸附释放性能的影响。结果表明:经修饰后丝素蛋白质的等电点为pH=6左右,而天然的为pH=4左右;与未修饰相比,经修饰的丝素膜对阳离子化合物的吸附量减少,对阴离子化合物的吸附量增加,而且经修饰的多孔丝素材料对阳离子化合物的释放量增加,对阴离子化合物的释放量则明显降低。因此,认为用羧基酰胺化修饰的方法,可在一定程度上改变丝素材料对离子型化合物的吸收释放性能。
另外,用甲壳素交联丝素蛋白膜可以获得半渗透聚合体网状物,对离子和pH具有很好的敏感性,被期望用作人工肌腱。有人曾用含有磁小体的交联壳聚糖丝素膜作为药物缓释材料来调控5-氟尿嘧啶药物释放情况和磁反应特性。结果表明,交联壳聚糖丝素膜的释放程度和诱捕效率比纯甲壳素微球体要好得多,5-氟的释放程度随着交联剂戊二醛浓度的增加而降低。
4提高丝素蛋白材料的抗血凝性
异丁烯酰基丙烯酰基磷酸胆碱(MPC)是1种新合成的磷酸胆碱聚合物。在没有抗凝血剂的条件下,也能有效地阻止血凝的发生。把MPC聚合物接枝到丝素蛋白分子链上,可以很好地观察到接枝物的抗血凝性。Furuzono等通过异丁烯酰基丙烯酰基异氰酸酯(MOI)使丝素蛋白和MPC聚合体相互接枝。通过测定血小板在MPC-SF上的粘附能力,与原始丝素SF相比,血小板粘附量有了明显的减少。由此可以得出,经MPC修饰后的丝素材料的抗血凝性有所提高。
此外,硫化丝素也具有很好的抗血凝性。它是通过丝素蛋白与硫酸或氯代硫酸在嘧啶溶液下反应所得。硫化后的丝素能延长血液凝固时间,并且随着硫酸基团的增加,抗血凝性也有了明显的提高。
5调控丝素蛋白细胞培养基质的功能
丝素材料具有良好的生物相容性,可以用来做细胞培养基质。为了增强丝素蛋白材料的功能,如更强的抗菌抑菌性,调控细胞生长速度等,一些研究尝试了化学改性的方法。
5.1丝素/低聚糖接枝物
N-乙炔-壳聚寡糖(NACOS)含有六个以上的单糖单元,具有很强的抗菌性和抗肿瘤性。将其接枝到丝素蛋白上后,并在0.6%壳聚寡糖/丝素接枝物(NACOS-SF)上培养大肠杆菌24h后发现,此接枝物上大肠杆菌的细胞数目并没有明显的增加,这就是低聚寡糖(COS)发挥了作用。因此,NACOS-SF可以起到抗菌抑菌的效果。
最近,Gotoh等报道了关于乳糖/丝素接枝物作为肝细胞粘附支架材料的研究。他们利用氰尿酰氯(CY)把乳糖接枝到丝素蛋白主链上,所得溶液制成膜,在其上培养肝细胞,结果发现细胞粘附能力是纯丝素膜的8倍,与胶原相当;培养2d后,涂有接枝物的肝细胞形成的单层与胶原相比稍显圆滑和集中,更有利于肝细胞的培养。
5.2丝素/聚合体接枝物
为评估材料的亲水性,Gotoh等分别测定了聚乙二醇/丝素接枝物(PEG-SF)和丝素(SF)的水分含量和接触角。结果发现,PEG-SF含水率达380%,而SF只有32%。这也说明了亲水性PEG链接枝到丝素链上后,增加了水分含量,从而提高了丝素材料的亲水性。
亲水性的提高,可以带来其他性能的改变。Gotoh等以PEG-SF作细胞培养基质,与SF对照,比较细胞的生长率。结果显示,随着时间的推移,SF上的培养细胞个数有了明显的增加,而PEG-SF则几乎没有变化。从PEG-SF对细胞的低吸附性和低生长率上可以得出,PEG-SF可以调控细胞粘附的数量和生长速度。
经聚乳酸表面修饰过的丝素蛋白能够提高造骨细胞与修饰后的膜之间的交互作用,促进细胞粘附和增值。
相类似的还有通过对精氨酸化学修饰,来影响对纤维原细胞的附着能力。
6总结和展望
丝素蛋白材料具有良好的生物相容性,在生物医用材料领域的应用前景甚广。但是,纯丝素蛋白材料的力学性能等尚未达到实用性的要求,而改性的研究是1种良好的途径。
二 : 蚕丝蛋白
蚕丝蛋白质在化妆品领域的开发利用 由于蚕丝蛋白质与人体皮肤角朊蛋白质极相似,两者有极好的亲和性;由于蚕丝蛋白质分子特殊的化学结构,所以蚕丝蛋白质具有良好的吸湿性和散湿性能,能适应周围环境的变化,起天然调湿、改善人体皮肤营养、防止皮肤起皱、增强皮肤细胞活力和弹性、促进细胞新陈代谢及维持皮肤正常生理状态的作用;蚕丝蛋白质还具有吸收紫外线,防止日光辐射对人体皮肤损害的作用,所以蚕丝蛋白质及蛋白质的水解物——丝素肽(丝多缩氨酸)可作为美容化妆品的优良添加剂。 蚕丝蛋白
蚕丝蛋白(Fibroin;シルクタンパク )又名:丝素蛋白。丝素蛋白,蚕丝蛋白主要含有丝素和丝胶二种不同的蛋白质是从蚕丝中提取的天然高分子纤维蛋白,含量约占蚕丝的,、
70%~80%,含有18种氨基酸,其中甘氨酸(gly)、丙氨酸(ala)和丝氨酸(ser)约占总组成的80%以上。
10
本词条 无基本信息模块, 欢迎各位 编辑词条,额外获取10个积分。
目录 1 概述
2 蚕丝蛋白护肤
3 护肤5大功效
4 蚕丝蛋白提取工艺流程
1 概述
丝素本身具有良好的机械性能和理化性质,如良好的柔韧性和抗拉伸强度、透气透湿性、缓释性等,而且经过不同处理可以得到不同的形态,如纤维、溶液、粉、膜以及凝胶等。 2 蚕丝蛋白护肤
天然蚕丝蛋白水解液中的有效成份分层释放, 10秒钟渗透肌肤真皮层,有效抑制黑色素生成,控制色素。促进胶原蛋白合成,活化细胞,提高细胞的免疫力,促进肌肤的新陈代谢率,帮助修补受损的皮肤组织,令暗哑疲倦的肌肤再添生机,从而在极短时间内还原美白、光泽的肌肤。
早在唐代孙思邈《千金要方》、宋代王怀隐《太平圣惠方》、明代李时珍《本草纲目》等医籍中均有记载,蚕丝的天然亲肤力十分明显,由于蚕丝中含有多种氨基酸和蛋白质,含有的蛋白质大大高于珍珠,其中含氮量比珍珠高几十倍,主要氨基酸含量高10倍以上,天然蚕丝加工提 炼成天然蚕丝蛋白水解液。蚕丝蛋白水解液的渗透力极强,涂于皮肤10秒钟左右,蚕丝蛋白就能渗入肌肤真皮层,发挥保湿作用,其透过角质层 与皮肤表皮细胞结合,并被细胞作为营养吸收,参与和促进细胞代谢,为其新陈代谢提供必需的养分,还能修复已损伤的皮肤。促进肌肤细胞 再生的作用。实验进一步证实,蚕丝蛋白对黑色素生成的抑制更为有效,丝缩氨基酸还能抑制皮肤中酪氨酸酶的活性,从而抑制酪氨酸酶生成黑色素,有内而外改善暗淡肤色。富含多种氨基酸和小分子蛋白质,极易为肌肤吸收,提供肌肤美白所需的营养成分。肌肤逐渐恢复并保持健康白 皙,呈现如丝般柔滑细腻,焕发动人光彩,倍增魅力! 进一步更实现了女人希望皮肤白皙的梦想.
3 护肤5大功效
蚕丝蛋白纤维是一种新型的功能性纤维,具有其它纤维及加工品无可替代的独特性能和无可比拟的旺盛生命力。经过染织而成的各种色彩绚丽的蚕丝蛋白面料,更易缝制加工成各类高级成衣及运用于高档家纺市场。蚕丝蛋白纤维所具有的特别功效有以下五点:
第一,舒适感。蚕丝蛋白纤维与人体有极好的生物相容性,加之表面光滑,手感柔软,其对人体的摩擦刺激系数较其他各类纤维要低的多。因此,当我们的娇嫩肌肤与滑爽细腻的蚕丝蛋白纤维邂逅时,它以其特有的柔顺质感,依着人体的曲线,体贴而又安全地呵护着我们的每一寸肌肤。
第二,吸、放湿性好。蚕丝蛋白纤维富集了许多胺基(-CHNH)、氨基(-NH2)等亲水性基团,又由于其多孔性,易于水分子扩散,所以它能在空气中吸收水分或散发水分,并保持一定的水分。在正常气温下,它可以帮助皮肤保有一定的水分,不使皮肤过于干燥;在夏季穿着,又可将人体排出的汗水及热量迅速散发,使人感到凉爽无比。正是由于这种性能,使蚕丝蛋白纤维更适合于与人体皮肤直接接触。
第三,光泽度好。蚕丝蛋白纤维中含有的蚕丝蛋白,是从蚕儿吐出的雪白的蚕丝中提取,为纯天然产品,织成的面料含有丝般光泽,穿上之后光彩照人。
第四,抗紫外线,热晒牢度好。蚕丝蛋白中的色氨酸、酪氨酸能吸收紫外线,因此蚕丝蛋白纤维具有较好的抗紫外线功能。而由于载体是粘胶纤维,以及研发过程中的采用的一些高新技术使得蚕丝蛋白纤维在抗紫外线的前提下,热晒牢度较好,不会因为热晒而掉色,使面料颜色发生改变,从而降低美观效果。
第五,上色鲜艳程度好,抗皱性好。蚕丝蛋白纤维在纺纱染整性能上,以活性中性染料为佳,适用于各种纺织产品的生产加工。其织成的面料抗皱性也明显好于真丝,蚕丝蛋白纤维织物具有效好的物理机械性能和高稳定性,织物湿态下变形小,具有较好的耐磨性。
1、 深层美白:深入肌肤底层,从根本上美白肌肤而无副作用;
2、 长效保湿:NMF因子十倍于常规植物或化学保湿剂,给肌肤持续高效补充水分;
3、 滋养调理:渗透力强, 为肌肤提供必需的养分, 促进细胞代谢,改善肤质.
4、 抗衰活颜:能激活肌肤细胞,改善微循环,抗衰除皱,活颜悦色;
5、 抗氧化:有效抵抗外部污染,保持皮肤PH值平衡,增强肌肤免疫力
4 蚕丝蛋白提取工艺流程
1.蚕种场削口茧及下脚丝一丝素蛋白一水解一过滤提纯一滤液pH测试调整一浓缩一灭菌一成品。
①削口茧、下脚丝去杂脱胶:即把蚕种场制种的削口茧壳内的脱皮或缫丝厂的下脚丝中的杂质剔除,然后在一定浓度的弱碱溶液中煮沸半小时,取出茧丝用水漂洗几次拧干(脱胶)。 ②水解:严格控制反应的温度、浴比、时间、溶剂浓度等条件,掌握至多肽的形式终止水解。
③过滤提纯:滤去没有完全水解的固体物质及杂质。
④pH调整:用pH调节剂调整pH在6.5~7.0左右。
⑤浓缩:把pH调整后的水解液上柱在薄膜浓缩器上进行浓缩。
⑥灭菌:(浓缩后的水解蛋白液如在食品上应用用酶制剂继续酶解,控制分子量在300~800左右中止,然后灭菌。)加入微量防腐剂,以防霉菌的滋生。
2.蚕丝蛋白丝素肽产品技术、质量指标
丝素肽又名丝多缩氨酸(SILK Polypeplide),其多肽键的基本结构为其中Rl、R2??R。为氨基酸侧基。丝素肽含有十七种氨基酸,其中人体所需的氨基酸几乎具备,特别是人体皮肤、毛发十分需要的营养氨基酸(甘氨酸、丙氨酸、丝氨酸、酪氨酸)其含量占到氨基酸总量的80%以上,这是其他水解蛋白所不可及的。
2.1技术指标:①外观形状:淡黄色透明液体,无特异气味,易溶于水。②双缩脲反应为阳性,紫外吸收光谱在波长200~240nm处有强吸收峰。③pH值6~7。④比重(d 2。o)1.000~1.050。⑨蛋白质含量:>/14%。⑥氨基酸:共17种,每ml中含87mg以上。⑦灰分:1%以下。⑧重金属汞、砷、铅分别在1ppm以下。⑨细菌总数(个/m1)≤10。⑩粪大肠杆菌、绿脓杆菌、金黄色葡萄球菌均不得检出。
2.2质量指标:丝素肽是由天然蚕丝经特殊工艺提取而成,因此,氨基酸组成与含量是衡量产品质量的重要指标之一;而丝素肽分子量的大小与护肤功效的发挥又有着密切的联系. [编辑本段]丝素蛋白材料改性的研究进展丝素蛋白是一种从蚕丝中提取的蛋白
质,具有很好的生物相容性,能制备成膜、凝胶、微胶囊等多种形态的材料,由于它独特的理化性能,目前丝素蛋白材料在生物医学材料领域被广泛的研究,如固定化酶材料、细胞培养基质、药物缓释剂、人工器官等等。为了提高丝素蛋白的性能,使其更好地应用于生物材料领域,近年来,国内外学者通过不同方法对丝素蛋白进行了化学修饰,取得了一些新的研究成果。本文概述了丝素蛋白材料改性在提高丝素蛋白材料的力学性能、热稳定性等理化性质;改变丝素蛋白材料对药物的释放速度;赋予丝素蛋白材料抗血凝性、对细胞生长的调控性等方面的研究报道。
1提高丝素蛋白材料的力学性能
丝素膜是被研究得最早和最深入的丝素材料,它是由丝素溶液干燥而得。经不溶化处理后的丝素膜脆性,是丝素膜的最大缺点。造成不溶化处理后的丝素膜脆性的主要原因是:丝素蛋白质大分子肽链上的肽键—CO—NH—中的C—N的键长为0.132nm,比C—N单键的键长0.147nm要短一点,比C=N双键的键长0.127nm要长些,使肽链具有部分双键的性质,刚性较大,影响了丝素蛋白质大分子主链的柔顺性。在经不溶化处理过程中,丝素蛋白的结构会发生从任意卷曲到β结构的转变。在丝素蛋白发生结构转变后,侧链与侧链间、侧链与主链间以及分子与分子之间可形成大量的氢键结合,产生大量的次级交联点,使丝素蛋白质大分子更难以运动,致使丝素膜的柔软性、伸长和弹性都较差。不少研究通过共混、接枝、交联等方法,以提高和改良丝素膜的力学性能。
1.1共混改性
Freddi等曾报道过丝素蛋白/纤维素共混膜的性能。纤维素的加入可以有效地改变共混膜的力学性能。拉伸断裂强度随着纤维素的含量从20%起呈线性增加,断裂伸长率则在20%~40%间急速增加,而后趋于缓和。含40%纤维素共混膜的柔韧度大约是纯丝素膜的10倍。共混膜柔韧度的提高由多种因素促成,如纤维素的力学性能的影响;共混膜的吸湿性纯丝素膜强,含水率的提高有利于丝素膜的柔韧度提高;相邻丝素蛋白链和纤维素链在无定形区内的相互作用产生的影响等。
李明忠等曾报道过关于丝素/聚氨酯共混膜的力学性能的研究。结果表明,随着聚氨酯所占比例的提高,丝素/聚氨酯共混膜的断裂伸长率明显增大;当聚氨酯所占比例大于40%时,断裂伸长率增长速度明显加快。当共混比例为50∶50时,断裂伸长率从60.2%提高到226.2%。聚氨酯阻止了丝素蛋白质大分子链段间产生过多的氢键结合,降低了丝素的结晶度,增加了可自由伸展链段,加上聚氨酯主链本身具备很好的柔顺性,所以共混膜的柔软性、弹性明显比纯丝素膜好。
最近,美国学者也曾做过这方面的实验。聚乙烯氧化物(PEO)是一种具有很好生物相容性的聚合体。他们在高浓缩的丝素溶液(8%)中加入不同比例的PEO溶液制成共混膜,发现加入2%的PEO可以提高膜的强度,而在其他浓度下膜的强度则降低。这种现象可以用相分离来解释。PEO和丝素蛋白两种聚合体发生相分离,阻止了丝素蛋白相内的相互作用。 当PEO含量达40%时,共混膜的断裂伸长率可从原来的1.9%增加到10.9%,因此,PEO
的加入有助于丝素蛋白柔韧性的提高。另外,研究还发现PEO能方便地从共混膜上萃取,因此,很容易控制膜的多孔性和表面粗糙程度。
王朝霞等人研究了丝素/聚乙烯基吡咯烷酮(PVP)共混膜的制备方法和性能。结果表明,PVP与丝素蛋白共混后,可使共混膜增加伸长率、吸湿性以及透气性,改善了丝素创面保护膜的性能和应用效果。共混膜的强度随PVP含量的增加而有所降低。这是因为PVP是完全非晶态结构,其分子呈无规卷曲状,故PVP的加入使共混膜的强度降低。共混膜的伸长率开始随PVP的比例增加而下降,PVP/SF为2∶8时,伸长率较小,只有13%左右。而后伸长率又逐渐提高。PVP/SF为3∶7左右时,伸长率最大,可达18%以上。
关于丝素共混膜的研究还有丝素蛋白/海藻酸钠共混膜[5],丝素/明胶[6]等等,都不同程度地增强了丝素膜的强度和弹性。
1.2化学接枝改性
20世纪80~90年代,开展了较多的对丝素蛋白的接枝改性研究。刘剑洪等曾用四价铈盐作引发剂,引发丝素蛋白纤维接枝紫外吸收剂——2-羟基-4-丙烯酰氧二苯酮(HAOBP),虽然改善了丝素蛋白纤维的紫外稳定性能,且力学性能却大幅度地下降[7]。为了解决这一问题,刘剑洪继续采用“无引发剂聚合”法在丝素蛋白纤维表面接枝HAOBP的可行性。结果发现,这种接枝聚合方法是一种更为有效的改性方法。接枝0.6%HAOBP的丝素蛋白纤维,其热稳定性及紫外稳定性均得到了显著的改善,但力学性能没有下降。
Tsukada等曾研究了甲基丙烯腈接枝丝素纤维后物理性能的改变。结果表明,随着接枝物甲基丙烯腈的加入,丝素纤维的拉伸模量有所降低,这说明了接枝反应使得丝素纤维变得更加柔软且有弹性。
除了家蚕丝的化学接枝外,还有其他蚕丝的接枝共聚。Tsukada等研究了酸酐对柞蚕丝的化学修饰。柞蚕丝经LiSCN预处理后,与酸酐发生酰胺化反应。有意思的是,无论LiSCN预处理还是酰胺化修饰,共聚物的物理性能和热行为几乎没有发生变化,但是预处理后含水率有所增加,而酰胺化修饰后含水率却线性下降。柞蚕丝的这些性能为聚合反应提供较宽的适用范围,使得柞蚕丝很可能成为一种生物材料。
1.3化学交联卢神州等以环氧氯丙烷和聚乙二醇(PEG)为原料,在碱性催化下反应得到聚乙二醇缩水甘油醚(PEGO),作为制备丝素蛋白膜的交联剂。随PGE含量的增加,膜的拉伸断裂强度和杨氏模量减小,断裂伸长率增大、机械性能比纯丝素膜有了明显的提高 。闵思佳等发现用二缩水甘油基乙醚作为交联剂所制备的丝素蛋白质凝胶(CFG)具有良好的强度和柔韧性。根据制作条件可达压缩强度大于100g/mm2,压缩变形率大于60%。另外,材料的力学强度跟丝素水溶液的浓度有关。4%(wt)的丝素蛋白质水溶液的各种凝胶的强度和变形率均小于7%(wt)浓度的各种凝胶。这是因为丝素蛋白质浓度低时,形成的三维网目的结合点稀疏,因此,凝胶强度较低。要得到高强度CFG,除了合适的交联剂等外,还需有合适的丝素水溶液浓度。
2提高丝素蛋白材料的热性能
聚丙烯酰胺(PAAm)是一种水溶性聚合物,目前,它在生物医学和制药上被用作水凝胶,与血液有良好的相容性。因此,丝素蛋白与PAAm共混膜的性能也广受学者的关注。Freddi等曾报道了丝素/聚丙烯酰胺共混膜的结构和物理性能。通过测定混合前后热能的变化来分析,结果表明PAAm的加入,提高了丝素蛋白的热稳定性。即使PAAm含量很低(小于25%)时,膜断裂至少在300℃(比纯丝素蛋白高出100℃)。高温下,丝素蛋白的动力学损耗系数峰发生了很大的变化,这些都归因于PAAm链的导入增强了丝素链的分子运动所造成的。
3调控丝素蛋白材料的药物释放速度
闵思佳等曾测试了酰胺化修饰丝素材料对离子型化合物的吸附释放性能的影响。结果表明:经修饰后丝素蛋白质的等电点为pH=6左右,而天然的为pH=4左右;与未修饰相比,经修饰的丝素膜对阳离子化合物的吸附量减少,对阴离子化合物的吸附量增加,而且经修饰的多孔丝素材料对阳离子化合物的释放量增加,对阴离子化合物的释放量则明显降低。因此,认为用羧基酰胺化修饰的方法,可在一定程度上改变丝素材料对离子型化合物的吸收释放性能。
另外,用甲壳素交联丝素蛋白膜可以获得半渗透聚合体网状物,对离子和pH具有很好的敏感性,被期望用作人工肌腱。有人曾用含有磁小体的交联壳聚糖丝素膜作为药物缓释材料来调控5-氟尿嘧啶药物释放情况和磁反应特性。结果表明,交联壳聚糖丝素膜的释放程度和诱捕效率比纯甲壳素微球体要好得多,5-氟的释放程度随着交联剂戊二醛浓度的增加而降低。
4提高丝素蛋白材料的抗血凝性
异丁烯酰基丙烯酰基磷酸胆碱(MPC)是一种新合成的磷酸胆碱聚合物。在没有抗凝血剂的条件下,也能有效地阻止血凝的发生。把MPC聚合物接枝到丝素蛋白分子链上,可以很好地观察到接枝物的抗血凝性。Furuzono等通过异丁烯酰基丙烯酰基异氰酸酯(MOI)使丝素蛋白和MPC聚合体相互接枝。通过测定血小板在MPC-SF上的粘附能力,与原始丝素SF相比,血小板粘附量有了明显的减少。由此可以得出,经MPC修饰后的丝素材料的抗血凝性有所提高[17]。
此外,硫化丝素也具有很好的抗血凝性。它是通过丝素蛋白与硫酸或氯代硫酸在嘧啶溶液下反应所得。硫化后的丝素能延长血液凝固时间,并且随着硫酸基团的增加,抗血凝性也有了明显的提高。
5调控丝素蛋白细胞培养基质的功能
丝素材料具有良好的生物相容性,可以用来做细胞培养基质。为了增强丝素蛋白材料的功能,如更强的抗菌抑菌性,调控细胞生长速度等,一些研究尝试了化学改性的方法。
5.1丝素/低聚糖接枝物
N-乙炔-壳聚寡糖(NACOS)含有6个以上的单糖单元,具有很强的抗菌性和抗肿瘤性。
将其接枝到丝素蛋白上后,并在0.6%壳聚寡糖/丝素接枝物(NACOS-SF)上培养大肠杆菌24h后发现,此接枝物上大肠杆菌的细胞数目并没有明显的增加,这就是低聚寡糖(COS)发挥了作用。因此,NACOS-SF可以起到抗菌抑菌的效果。
最近,Gotoh等报道了关于乳糖/丝素接枝物作为肝细胞粘附支架材料的研究。他们利用氰尿酰氯(CY)把乳糖接枝到丝素蛋白主链上,所得溶液制成膜,在其上培养肝细胞,结果发现细胞粘附能力是纯丝素膜的8倍,与胶原相当;培养2d后,涂有接枝物的肝细胞形成的单层与胶原相比稍显圆滑和集中,更有利于肝细胞的培养。
5.2丝素/聚合体接枝物
为评估材料的亲水性,Gotoh等分别测定了聚乙二醇/丝素接枝物(PEG-SF)和丝素(SF)的水分含量和接触角。结果发现,PEG-SF含水率达380%,而SF只有32%。这也说明了亲水性PEG链接枝到丝素链上后,增加了水分含量,从而提高了丝素材料的亲水性。
亲水性的提高,可以带来其他性能的改变。Gotoh等以PEG-SF作细胞培养基质,与SF对照,比较细胞的生长率。结果显示,随着时间的推移,SF上的培养细胞个数有了明显的增加,而PEG-SF则几乎没有变化。从PEG-SF对细胞的低吸附性和低生长率上可以得出,PEG-SF可以调控细胞粘附的数量和生长速度。
经聚乳酸表面修饰过的丝素蛋白能够提高造骨细胞与修饰后的膜之间的交互作用,促进细胞粘附和增值。
相类似的还有通过对精氨酸化学修饰,来影响对纤维原细胞的附着能力。
6总结和展望
丝素蛋白材料具有良好的生物相容性,在生物医用材料领域的应用前景甚广。但是,纯丝素蛋白材料的力学性能等尚未达到实用性的要求,而改性的研究是一种良好的途径。
蚕丝是一种高蛋 白纤维 , 富含 18 种氨 基酸〔 ’习, 且其 结构与人体皮 肤相 似 , 经水 解后 的丝 蛋 白 , 相对 分 子 、 渗透力增 强 , 可加速 细胞 的新陈代谢 , 使肌肤富有 光泽 、 增加弹性 , 同时具有很好 的保湿 、 抗 皱 、 润肤 、 抑制量 减小
#
黑色素 的生成 及 防止化 学损 害的作 用 。 将 蚕 丝水解 液 作营养 添加剂 加人 化妆 品 中, 能 让肌 肤感 觉 清爽 自然 , 另外 , 蚕丝蛋 白可 以 废茧丝作 为原料 , 成本 低廉 , 不含 生 理活性成分 , 来源充 足川 。 因此 , 将蚕丝蛋 白提取分离并 应用于化妆品行业 已成 为国内外普遍 研究 的课题 , 并 已 达到了实用 化程 度 。 此 外 , 蚕丝 水解 液在 医 疗保 健 、 美 容 、食 品 、酶工程等方面也具有广 阔的
1
.
蚕丝蛋白丝素肤的提取工艺技术和流程
蚕丝蛋白主要含有丝素和丝胶二种不同的蛋白质经脱胶后得到不溶性丝素蛋白丝蛋白在一 , , 定的条件下水解即可制得可溶性丝蛋白( 丝素肤)
, 目前生产中采用的水解法主要有酸水解法( 硫酸
、
盐酸)
、碱( 氢氧化钠) 水解法和酶水解法等笔者等经反复探索认为用于化妆品添加剂采用盐酸 , ,
, 。 水解法最理想而用于食品添加剂采用酶法水解较合适
3 0 万左右
, 经研究分析蚕丝蛋白质与人体皮肤角质阮结构极为相似但它为纤维状蛋白质分子量在3~ , , , 不溶于水、 。 目前用于保护头发
皮肤的蛋白质类制品国际上公认的水解蛋白的分子 ,
量在1《X旧~ 5《X】) 左右分子量太大或太小头发 , ,
、皮肤都不易吸收利用
, 。 经过多年反复试验我们找到了一条用料省
、
得率高
、
产品质量稳定没有三废排放的工艺技术路线即采用水解法并严 , , ,
格控制反应条件使蛋白质不完全水解 ,
。
在技术处理上掌握水解成多肤的形成: 得到分子量在一定
范围内的蚕丝蛋白丝素肚它既保持蚕丝蛋白与皮肤良好的亲和性 ,
、吸湿性与放湿性赋于皮肤毛 ,
, , , , 发自然光泽起保湿作用又易于渗入皮肤与毛发内部很快被吸收为皮肤和毛发正常代谢提供
必需的养分对防止皮肤与毛发受化学和机械损伤起到保护作用, 。
其提取工艺流程是: 蚕种场削口
茧及下脚丝一丝素蛋白一水解~ 过滤提纯一滤液HP 测试调整~ 浓缩~ 灭菌~ 成品。 ①削口茧
下脚丝去杂脱胶即把蚕种场制种的削口茧壳内的脱皮或缀丝厂的下脚丝中的杂质 剔除然后在一定浓度的弱碱溶液中煮沸半小时取出茧丝用水漂洗几次拧干( 脱胶) ②水解严
格控制反应的温度 、: , , 。:
、
浴比
、
时间、
溶剂浓度等条件掌握至多肤的形式终止水解③过滤提纯滤 , 。:
去没有完全水解的固体物质及杂质④pH 调整用pH 调节剂调整p H 在.6 5一.7 0 左右⑤浓缩。: 。: 把pH 调整后的水解液上柱在薄膜浓缩器上进行浓缩
。⑥灭菌: ( 浓缩后的水解蛋白液如在食品上应
, , 。 用用酶制剂继续酶解控制分子量在30 ~ 80 左右中止然后灭菌
) 加入微量防腐剂以防霉菌 ,
的滋生。
2
.蚕丝蛋白丝紊肚产品技术、 质t 指标 丝素肤又名丝多缩氨酸 S( LI K Po yl Ppe lide ) , 其多肤键的基本结构为 0 H O O 姚N 一毛H书{ 一 N一毛H 一毛一N 卜 · ? ? C斗N 一毛H一毛月O H ! RI HI RzI oll H } Rn } 其中Rl 、 R 2 ’’ · ? Rn 为氨基酸侧基 。 丝素肤含有十七种氨基酸, 其中人体所需的氨基酸几乎具备, 特别是人体皮肤 、 毛发十分需要 的营养氨基酸 (甘氨酸、 丙氨酸、 丝氨酸、 酪氨酸 ) 其含量 占到氨基酸总量的 80 % 以上 , 这是其他 水解蛋白所不可及的 。
2
.
1 技术指标: ①外观形状: 淡黄色透明液体 , 无特异气味, 易溶于水 。 ②双缩脉反应为阳性, 紫外吸收光谱在波长 200 一 24n0 m 处有强吸收峰。 ③pH 值 6一 7 。 ④比重 ( d器 ) 1 . 000 一 1. 05 0。 ⑤蛋 白质含量: ) 14 % 。 ⑥氨基酸: 共 17 种, 每 而 中含 87 m g 以上 。 ⑦灰分: 1% 以下 。 ⑧重金属汞 、 砷 、 铅分别在 1即m 以下。 ⑨细菌总数 (个nill ) 簇 10 。 L粪大肠杆菌、 绿脓杆菌、 金黄色葡萄球菌 均不得检出。 .2 2 质t 指标: 丝 素肤是由天然蚕丝经特殊工 艺提取而成 , 因此 , 氨基酸组成与含量是衡量产 品质量的重要指标之一 : 而丝 素肤分子量的大小与护肤功效的发挥又有着密切的联系, 表 1 、 2 列举 了国内外同类产品的分析测试结果。
三 : 蚕丝蛋白
蚕丝蛋白质在化妆品领域的开发利用 由于蚕丝蛋白质与人体皮肤角朊蛋白质极相似,两者有极好的亲和性;由于蚕丝蛋白质分子特殊的化学结构,所以蚕丝蛋白质具有良好的吸湿性和散湿性能,能适应周围环境的变化,起天然调湿、改善人体皮肤营养、防止皮肤起皱、增强皮肤细胞活力和弹性、促进细胞新陈代谢及维持皮肤正常生理状态的作用;蚕丝蛋白质还具有吸收紫外线,防止日光辐射对人体皮肤损害的作用,所以蚕丝蛋白质及蛋白质的水解物——丝素肽(丝多缩氨酸)可作为美容化妆品的优良添加剂。[www.61k.com) 蚕丝蛋白
蚕丝蛋白(Fibroin;シルクタンパク )又名:丝素蛋白。丝素蛋白,蚕丝蛋白主要含有丝素和丝胶二种不同的蛋白质是从蚕丝中提取的天然高分子纤维蛋白,含量约占蚕丝的,、
70%~80%,含有18种氨基酸,其中甘氨酸(gly)、丙氨酸(ala)和丝氨酸(ser)约占总组成的80%以上。
10
本词条 无基本信息模块, 欢迎各位 编辑词条,额外获取10个积分。
目录 1 概述
2 蚕丝蛋白护肤
3 护肤5大功效
4 蚕丝蛋白提取工艺流程
1 概述
丝素本身具有良好的机械性能和理化性质,如良好的柔韧性和抗拉伸强度、透气透湿性、缓释性等,而且经过不同处理可以得到不同的形态,如纤维、溶液、粉、膜以及凝胶等。 2 蚕丝蛋白护肤
天然蚕丝蛋白水解液中的有效成份分层释放, 10秒钟渗透肌肤真皮层,有效抑制黑色素生成,控制色素。促进胶原蛋白合成,活化细胞,提高细胞的免疫力,促进肌肤的新陈代谢率,帮助修补受损的皮肤组织,令暗哑疲倦的肌肤再添生机,从而在极短时间内还原美白、光泽的肌肤。
蚕丝蛋白 蚕丝蛋白
早在唐代孙思邈《千金要方》、宋代王怀隐《太平圣惠方》、明代李时珍《本草纲目》等医籍中均有记载,蚕丝的天然亲肤力十分明显,由于蚕丝中含有多种氨基酸和蛋白质,含有的蛋白质大大高于珍珠,其中含氮量比珍珠高几十倍,主要氨基酸含量高10倍以上,天然蚕丝加工提 炼成天然蚕丝蛋白水解液。(www.61k.com]蚕丝蛋白水解液的渗透力极强,涂于皮肤10秒钟左右,蚕丝蛋白就能渗入肌肤真皮层,发挥保湿作用,其透过角质层 与皮肤表皮细胞结合,并被细胞作为营养吸收,参与和促进细胞代谢,为其新陈代谢提供必需的养分,还能修复已损伤的皮肤。促进肌肤细胞 再生的作用。实验进一步证实,蚕丝蛋白对黑色素生成的抑制更为有效,丝缩氨基酸还能抑制皮肤中酪氨酸酶的活性,从而抑制酪氨酸酶生成黑色素,有内而外改善暗淡肤色。富含多种氨基酸和小分子蛋白质,极易为肌肤吸收,提供肌肤美白所需的营养成分。肌肤逐渐恢复并保持健康白 皙,呈现如丝般柔滑细腻,焕发动人光彩,倍增魅力! 进一步更实现了女人希望皮肤白皙的梦想.
3 护肤5大功效
蚕丝蛋白纤维是一种新型的功能性纤维,具有其它纤维及加工品无可替代的独特性能和无可比拟的旺盛生命力。经过染织而成的各种色彩绚丽的蚕丝蛋白面料,更易缝制加工成各类高级成衣及运用于高档家纺市场。蚕丝蛋白纤维所具有的特别功效有以下五点:
第一,舒适感。蚕丝蛋白纤维与人体有极好的生物相容性,加之表面光滑,手感柔软,其对人体的摩擦刺激系数较其他各类纤维要低的多。因此,当我们的娇嫩肌肤与滑爽细腻的蚕丝蛋白纤维邂逅时,它以其特有的柔顺质感,依着人体的曲线,体贴而又安全地呵护着我们的每一寸肌肤。
第二,吸、放湿性好。蚕丝蛋白纤维富集了许多胺基(-CHNH)、氨基(-NH2)等亲水性基团,又由于其多孔性,易于水分子扩散,所以它能在空气中吸收水分或散发水分,并保持一定的水分。在正常气温下,它可以帮助皮肤保有一定的水分,不使皮肤过于干燥;在夏季穿着,又可将人体排出的汗水及热量迅速散发,使人感到凉爽无比。正是由于这种性能,使蚕丝蛋白纤维更适合于与人体皮肤直接接触。
第三,光泽度好。蚕丝蛋白纤维中含有的蚕丝蛋白,是从蚕儿吐出的雪白的蚕丝中提取,为纯天然产品,织成的面料含有丝般光泽,穿上之后光彩照人。
第四,抗紫外线,热晒牢度好。蚕丝蛋白中的色氨酸、酪氨酸能吸收紫外线,因此蚕丝蛋白纤维具有较好的抗紫外线功能。而由于载体是粘胶纤维,以及研发过程中的采用的一些高新技术使得蚕丝蛋白纤维在抗紫外线的前提下,热晒牢度较好,不会因为热晒而掉色,使面料颜色发生改变,从而降低美观效果。
第五,上色鲜艳程度好,抗皱性好。蚕丝蛋白纤维在纺纱染整性能上,以活性中性染料为佳,适用于各种纺织产品的生产加工。其织成的面料抗皱性也明显好于真丝,蚕丝蛋白纤维织物具有效好的物理机械性能和高稳定性,织物湿态下变形小,具有较好的耐磨性。
蚕丝蛋白 蚕丝蛋白
1、 深层美白:深入肌肤底层,从根本上美白肌肤而无副作用;
2、 长效保湿:NMF因子十倍于常规植物或化学保湿剂,给肌肤持续高效补充水分;
3、 滋养调理:渗透力强, 为肌肤提供必需的养分, 促进细胞代谢,改善肤质.
4、 抗衰活颜:能激活肌肤细胞,改善微循环,抗衰除皱,活颜悦色;
5、 抗氧化:有效抵抗外部污染,保持皮肤PH值平衡,增强肌肤免疫力
4 蚕丝蛋白提取工艺流程
1.蚕种场削口茧及下脚丝一丝素蛋白一水解一过滤提纯一滤液pH测试调整一浓缩一灭菌一成品。(www.61k.com)
①削口茧、下脚丝去杂脱胶:即把蚕种场制种的削口茧壳内的脱皮或缫丝厂的下脚丝中的杂质剔除,然后在一定浓度的弱碱溶液中煮沸半小时,取出茧丝用水漂洗几次拧干(脱胶)。 ②水解:严格控制反应的温度、浴比、时间、溶剂浓度等条件,掌握至多肽的形式终止水解。
③过滤提纯:滤去没有完全水解的固体物质及杂质。
④pH调整:用pH调节剂调整pH在6.5~7.0左右。
⑤浓缩:把pH调整后的水解液上柱在薄膜浓缩器上进行浓缩。
⑥灭菌:(浓缩后的水解蛋白液如在食品上应用用酶制剂继续酶解,控制分子量在300~800左右中止,然后灭菌。)加入微量防腐剂,以防霉菌的滋生。
2.蚕丝蛋白丝素肽产品技术、质量指标
丝素肽又名丝多缩氨酸(SILK Polypeplide),其多肽键的基本结构为其中Rl、R2??R。为氨基酸侧基。丝素肽含有十七种氨基酸,其中人体所需的氨基酸几乎具备,特别是人体皮肤、毛发十分需要的营养氨基酸(甘氨酸、丙氨酸、丝氨酸、酪氨酸)其含量占到氨基酸总量的80%以上,这是其他水解蛋白所不可及的。
2.1技术指标:①外观形状:淡黄色透明液体,无特异气味,易溶于水。②双缩脲反应为阳性,紫外吸收光谱在波长200~240nm处有强吸收峰。③pH值6~7。④比重(d 2。o)1.000~1.050。⑨蛋白质含量:>/14%。⑥氨基酸:共17种,每ml中含87mg以上。⑦灰分:1%以下。⑧重金属汞、砷、铅分别在1ppm以下。⑨细菌总数(个/m1)≤10。⑩粪大肠杆菌、绿脓杆菌、金黄色葡萄球菌均不得检出。
2.2质量指标:丝素肽是由天然蚕丝经特殊工艺提取而成,因此,氨基酸组成与含量是衡量产品质量的重要指标之一;而丝素肽分子量的大小与护肤功效的发挥又有着密切的联系. [编辑本段]丝素蛋白材料改性的研究进展丝素蛋白是一种从蚕丝中提取的蛋白
蚕丝蛋白 蚕丝蛋白
质,具有很好的生物相容性,能制备成膜、凝胶、微胶囊等多种形态的材料,由于它独特的理化性能,目前丝素蛋白材料在生物医学材料领域被广泛的研究,如固定化酶材料、细胞培养基质、药物缓释剂、人工器官等等。(www.61k.com)为了提高丝素蛋白的性能,使其更好地应用于生物材料领域,近年来,国内外学者通过不同方法对丝素蛋白进行了化学修饰,取得了一些新的研究成果。本文概述了丝素蛋白材料改性在提高丝素蛋白材料的力学性能、热稳定性等理化性质;改变丝素蛋白材料对药物的释放速度;赋予丝素蛋白材料抗血凝性、对细胞生长的调控性等方面的研究报道。
1提高丝素蛋白材料的力学性能
丝素膜是被研究得最早和最深入的丝素材料,它是由丝素溶液干燥而得。经不溶化处理后的丝素膜脆性,是丝素膜的最大缺点。造成不溶化处理后的丝素膜脆性的主要原因是:丝素蛋白质大分子肽链上的肽键—CO—NH—中的C—N的键长为0.132nm,比C—N单键的键长0.147nm要短一点,比C=N双键的键长0.127nm要长些,使肽链具有部分双键的性质,刚性较大,影响了丝素蛋白质大分子主链的柔顺性。在经不溶化处理过程中,丝素蛋白的结构会发生从任意卷曲到β结构的转变。在丝素蛋白发生结构转变后,侧链与侧链间、侧链与主链间以及分子与分子之间可形成大量的氢键结合,产生大量的次级交联点,使丝素蛋白质大分子更难以运动,致使丝素膜的柔软性、伸长和弹性都较差。不少研究通过共混、接枝、交联等方法,以提高和改良丝素膜的力学性能。
1.1共混改性
Freddi等曾报道过丝素蛋白/纤维素共混膜的性能。纤维素的加入可以有效地改变共混膜的力学性能。拉伸断裂强度随着纤维素的含量从20%起呈线性增加,断裂伸长率则在20%~40%间急速增加,而后趋于缓和。含40%纤维素共混膜的柔韧度大约是纯丝素膜的10倍。共混膜柔韧度的提高由多种因素促成,如纤维素的力学性能的影响;共混膜的吸湿性纯丝素膜强,含水率的提高有利于丝素膜的柔韧度提高;相邻丝素蛋白链和纤维素链在无定形区内的相互作用产生的影响等。
李明忠等曾报道过关于丝素/聚氨酯共混膜的力学性能的研究。结果表明,随着聚氨酯所占比例的提高,丝素/聚氨酯共混膜的断裂伸长率明显增大;当聚氨酯所占比例大于40%时,断裂伸长率增长速度明显加快。当共混比例为50∶50时,断裂伸长率从60.2%提高到226.2%。聚氨酯阻止了丝素蛋白质大分子链段间产生过多的氢键结合,降低了丝素的结晶度,增加了可自由伸展链段,加上聚氨酯主链本身具备很好的柔顺性,所以共混膜的柔软性、弹性明显比纯丝素膜好。
最近,美国学者也曾做过这方面的实验。聚乙烯氧化物(PEO)是一种具有很好生物相容性的聚合体。他们在高浓缩的丝素溶液(8%)中加入不同比例的PEO溶液制成共混膜,发现加入2%的PEO可以提高膜的强度,而在其他浓度下膜的强度则降低。这种现象可以用相分离来解释。PEO和丝素蛋白两种聚合体发生相分离,阻止了丝素蛋白相内的相互作用。 当PEO含量达40%时,共混膜的断裂伸长率可从原来的1.9%增加到10.9%,因此,PEO
蚕丝蛋白 蚕丝蛋白
的加入有助于丝素蛋白柔韧性的提高。[www.61k.com)另外,研究还发现PEO能方便地从共混膜上萃取,因此,很容易控制膜的多孔性和表面粗糙程度。
王朝霞等人研究了丝素/聚乙烯基吡咯烷酮(PVP)共混膜的制备方法和性能。结果表明,PVP与丝素蛋白共混后,可使共混膜增加伸长率、吸湿性以及透气性,改善了丝素创面保护膜的性能和应用效果。共混膜的强度随PVP含量的增加而有所降低。这是因为PVP是完全非晶态结构,其分子呈无规卷曲状,故PVP的加入使共混膜的强度降低。共混膜的伸长率开始随PVP的比例增加而下降,PVP/SF为2∶8时,伸长率较小,只有13%左右。而后伸长率又逐渐提高。PVP/SF为3∶7左右时,伸长率最大,可达18%以上。
关于丝素共混膜的研究还有丝素蛋白/海藻酸钠共混膜[5],丝素/明胶[6]等等,都不同程度地增强了丝素膜的强度和弹性。
1.2化学接枝改性
20世纪80~90年代,开展了较多的对丝素蛋白的接枝改性研究。刘剑洪等曾用四价铈盐作引发剂,引发丝素蛋白纤维接枝紫外吸收剂——2-羟基-4-丙烯酰氧二苯酮(HAOBP),虽然改善了丝素蛋白纤维的紫外稳定性能,且力学性能却大幅度地下降[7]。为了解决这一问题,刘剑洪继续采用“无引发剂聚合”法在丝素蛋白纤维表面接枝HAOBP的可行性。结果发现,这种接枝聚合方法是一种更为有效的改性方法。接枝0.6%HAOBP的丝素蛋白纤维,其热稳定性及紫外稳定性均得到了显著的改善,但力学性能没有下降。
Tsukada等曾研究了甲基丙烯腈接枝丝素纤维后物理性能的改变。结果表明,随着接枝物甲基丙烯腈的加入,丝素纤维的拉伸模量有所降低,这说明了接枝反应使得丝素纤维变得更加柔软且有弹性。
除了家蚕丝的化学接枝外,还有其他蚕丝的接枝共聚。Tsukada等研究了酸酐对柞蚕丝的化学修饰。柞蚕丝经LiSCN预处理后,与酸酐发生酰胺化反应。有意思的是,无论LiSCN预处理还是酰胺化修饰,共聚物的物理性能和热行为几乎没有发生变化,但是预处理后含水率有所增加,而酰胺化修饰后含水率却线性下降。柞蚕丝的这些性能为聚合反应提供较宽的适用范围,使得柞蚕丝很可能成为一种生物材料。
1.3化学交联卢神州等以环氧氯丙烷和聚乙二醇(PEG)为原料,在碱性催化下反应得到聚乙二醇缩水甘油醚(PEGO),作为制备丝素蛋白膜的交联剂。随PGE含量的增加,膜的拉伸断裂强度和杨氏模量减小,断裂伸长率增大、机械性能比纯丝素膜有了明显的提高 。闵思佳等发现用二缩水甘油基乙醚作为交联剂所制备的丝素蛋白质凝胶(CFG)具有良好的强度和柔韧性。根据制作条件可达压缩强度大于100g/mm2,压缩变形率大于60%。另外,材料的力学强度跟丝素水溶液的浓度有关。4%(wt)的丝素蛋白质水溶液的各种凝胶的强度和变形率均小于7%(wt)浓度的各种凝胶。这是因为丝素蛋白质浓度低时,形成的三维网目的结合点稀疏,因此,凝胶强度较低。要得到高强度CFG,除了合适的交联剂等外,还需有合适的丝素水溶液浓度。
2提高丝素蛋白材料的热性能
蚕丝蛋白 蚕丝蛋白
聚丙烯酰胺(PAAm)是一种水溶性聚合物,目前,它在生物医学和制药上被用作水凝胶,与血液有良好的相容性。[www.61k.com)因此,丝素蛋白与PAAm共混膜的性能也广受学者的关注。Freddi等曾报道了丝素/聚丙烯酰胺共混膜的结构和物理性能。通过测定混合前后热能的变化来分析,结果表明PAAm的加入,提高了丝素蛋白的热稳定性。即使PAAm含量很低(小于25%)时,膜断裂至少在300℃(比纯丝素蛋白高出100℃)。高温下,丝素蛋白的动力学损耗系数峰发生了很大的变化,这些都归因于PAAm链的导入增强了丝素链的分子运动所造成的。
3调控丝素蛋白材料的药物释放速度
闵思佳等曾测试了酰胺化修饰丝素材料对离子型化合物的吸附释放性能的影响。结果表明:经修饰后丝素蛋白质的等电点为pH=6左右,而天然的为pH=4左右;与未修饰相比,经修饰的丝素膜对阳离子化合物的吸附量减少,对阴离子化合物的吸附量增加,而且经修饰的多孔丝素材料对阳离子化合物的释放量增加,对阴离子化合物的释放量则明显降低。因此,认为用羧基酰胺化修饰的方法,可在一定程度上改变丝素材料对离子型化合物的吸收释放性能。
另外,用甲壳素交联丝素蛋白膜可以获得半渗透聚合体网状物,对离子和pH具有很好的敏感性,被期望用作人工肌腱。有人曾用含有磁小体的交联壳聚糖丝素膜作为药物缓释材料来调控5-氟尿嘧啶药物释放情况和磁反应特性。结果表明,交联壳聚糖丝素膜的释放程度和诱捕效率比纯甲壳素微球体要好得多,5-氟的释放程度随着交联剂戊二醛浓度的增加而降低。
4提高丝素蛋白材料的抗血凝性
异丁烯酰基丙烯酰基磷酸胆碱(MPC)是一种新合成的磷酸胆碱聚合物。在没有抗凝血剂的条件下,也能有效地阻止血凝的发生。把MPC聚合物接枝到丝素蛋白分子链上,可以很好地观察到接枝物的抗血凝性。Furuzono等通过异丁烯酰基丙烯酰基异氰酸酯(MOI)使丝素蛋白和MPC聚合体相互接枝。通过测定血小板在MPC-SF上的粘附能力,与原始丝素SF相比,血小板粘附量有了明显的减少。由此可以得出,经MPC修饰后的丝素材料的抗血凝性有所提高[17]。
此外,硫化丝素也具有很好的抗血凝性。它是通过丝素蛋白与硫酸或氯代硫酸在嘧啶溶液下反应所得。硫化后的丝素能延长血液凝固时间,并且随着硫酸基团的增加,抗血凝性也有了明显的提高。
5调控丝素蛋白细胞培养基质的功能
丝素材料具有良好的生物相容性,可以用来做细胞培养基质。为了增强丝素蛋白材料的功能,如更强的抗菌抑菌性,调控细胞生长速度等,一些研究尝试了化学改性的方法。
5.1丝素/低聚糖接枝物
N-乙炔-壳聚寡糖(NACOS)含有6个以上的单糖单元,具有很强的抗菌性和抗肿瘤性。
蚕丝蛋白 蚕丝蛋白
将其接枝到丝素蛋白上后,并在0.6%壳聚寡糖/丝素接枝物(NACOS-SF)上培养大肠杆菌24h后发现,此接枝物上大肠杆菌的细胞数目并没有明显的增加,这就是低聚寡糖(COS)发挥了作用。(www.61k.com]因此,NACOS-SF可以起到抗菌抑菌的效果。
最近,Gotoh等报道了关于乳糖/丝素接枝物作为肝细胞粘附支架材料的研究。他们利用氰尿酰氯(CY)把乳糖接枝到丝素蛋白主链上,所得溶液制成膜,在其上培养肝细胞,结果发现细胞粘附能力是纯丝素膜的8倍,与胶原相当;培养2d后,涂有接枝物的肝细胞形成的单层与胶原相比稍显圆滑和集中,更有利于肝细胞的培养。
5.2丝素/聚合体接枝物
为评估材料的亲水性,Gotoh等分别测定了聚乙二醇/丝素接枝物(PEG-SF)和丝素(SF)的水分含量和接触角。结果发现,PEG-SF含水率达380%,而SF只有32%。这也说明了亲水性PEG链接枝到丝素链上后,增加了水分含量,从而提高了丝素材料的亲水性。
亲水性的提高,可以带来其他性能的改变。Gotoh等以PEG-SF作细胞培养基质,与SF对照,比较细胞的生长率。结果显示,随着时间的推移,SF上的培养细胞个数有了明显的增加,而PEG-SF则几乎没有变化。从PEG-SF对细胞的低吸附性和低生长率上可以得出,PEG-SF可以调控细胞粘附的数量和生长速度。
经聚乳酸表面修饰过的丝素蛋白能够提高造骨细胞与修饰后的膜之间的交互作用,促进细胞粘附和增值。
相类似的还有通过对精氨酸化学修饰,来影响对纤维原细胞的附着能力。
6总结和展望
丝素蛋白材料具有良好的生物相容性,在生物医用材料领域的应用前景甚广。但是,纯丝素蛋白材料的力学性能等尚未达到实用性的要求,而改性的研究是一种良好的途径。
蚕丝是一种高蛋 白纤维 , 富含 18 种氨 基酸〔 ’习, 且其 结构与人体皮 肤相 似 , 经水 解后 的丝 蛋 白 , 相对 分 子 、 渗透力增 强 , 可加速 细胞 的新陈代谢 , 使肌肤富有 光泽 、 增加弹性 , 同时具有很好 的保湿 、 抗 皱 、 润肤 、 抑制量 减小
#
黑色素 的生成 及 防止化 学损 害的作 用 。 将 蚕 丝水解 液 作营养 添加剂 加人 化妆 品 中, 能 让肌 肤感 觉 清爽 自然 , 另外 , 蚕丝蛋 白可 以 废茧丝作 为原料 , 成本 低廉 , 不含 生 理活性成分 , 来源充 足川 。 因此 , 将蚕丝蛋 白提取分离并 应用于化妆品行业 已成 为国内外普遍 研究 的课题 , 并 已 达到了实用 化程 度 。 此 外 , 蚕丝 水解 液在 医 疗保 健 、 美 容 、食 品 、酶工程等方面也具有广 阔的
1
.
蚕丝蛋白丝素肤的提取工艺技术和流程
蚕丝蛋白 蚕丝蛋白
蚕丝蛋白主要含有丝素和丝胶二种不同的蛋白质经脱胶后得到不溶性丝素蛋白丝蛋白在一 , , 定的条件下水解即可制得可溶性丝蛋白( 丝素肤)
, 目前生产中采用的水解法主要有酸水解法( 硫酸
、
盐酸)
、碱( 氢氧化钠) 水解法和酶水解法等笔者等经反复探索认为用于化妆品添加剂采用盐酸 , ,
, 。(www.61k.com] 水解法最理想而用于食品添加剂采用酶法水解较合适
3 0 万左右
, 经研究分析蚕丝蛋白质与人体皮肤角质阮结构极为相似但它为纤维状蛋白质分子量在3~ , , , 不溶于水、 。 目前用于保护头发
皮肤的蛋白质类制品国际上公认的水解蛋白的分子 ,
量在1《X旧~ 5《X】) 左右分子量太大或太小头发 , ,
、皮肤都不易吸收利用
, 。 经过多年反复试验我们找到了一条用料省
、
得率高
、
产品质量稳定没有三废排放的工艺技术路线即采用水解法并严 , , ,
格控制反应条件使蛋白质不完全水解 ,
。
在技术处理上掌握水解成多肤的形成: 得到分子量在一定
范围内的蚕丝蛋白丝素肚它既保持蚕丝蛋白与皮肤良好的亲和性 ,
、吸湿性与放湿性赋于皮肤毛 ,
, , , , 发自然光泽起保湿作用又易于渗入皮肤与毛发内部很快被吸收为皮肤和毛发正常代谢提供
必需的养分对防止皮肤与毛发受化学和机械损伤起到保护作用, 。
其提取工艺流程是: 蚕种场削口
茧及下脚丝一丝素蛋白一水解~ 过滤提纯一滤液HP 测试调整~ 浓缩~ 灭菌~ 成品。 ①削口茧
下脚丝去杂脱胶即把蚕种场制种的削口茧壳内的脱皮或缀丝厂的下脚丝中的杂质 剔除然后在一定浓度的弱碱溶液中煮沸半小时取出茧丝用水漂洗几次拧干( 脱胶) ②水解严
格控制反应的温度 、: , , 。:
、
浴比
、
时间、
溶剂浓度等条件掌握至多肤的形式终止水解③过滤提纯滤 , 。:
去没有完全水解的固体物质及杂质④pH 调整用pH 调节剂调整p H 在.6 5一.7 0 左右⑤浓缩。: 。: 把pH 调整后的水解液上柱在薄膜浓缩器上进行浓缩
。⑥灭菌: ( 浓缩后的水解蛋白液如在食品上应
, , 。 用用酶制剂继续酶解控制分子量在30 ~ 80 左右中止然后灭菌
) 加入微量防腐剂以防霉菌 ,
的滋生。
蚕丝蛋白 蚕丝蛋白
2
.蚕丝蛋白丝紊肚产品技术、 质t 指标 丝素肤又名丝多缩氨酸 S( LI K Po yl Ppe lide ) , 其多肤键的基本结构为 0 H O O 姚N 一毛H书{ 一 N一毛H 一毛一N 卜 · ? ? C斗N 一毛H一毛月O H ! RI HI RzI oll H } Rn } 其中Rl 、 R 2 ’’ · ? Rn 为氨基酸侧基 。(www.61k.com] 丝素肤含有十七种氨基酸, 其中人体所需的氨基酸几乎具备, 特别是人体皮肤 、 毛发十分需要 的营养氨基酸 (甘氨酸、 丙氨酸、 丝氨酸、 酪氨酸 ) 其含量 占到氨基酸总量的 80 % 以上 , 这是其他 水解蛋白所不可及的 。
2
.
1 技术指标: ①外观形状: 淡黄色透明液体 , 无特异气味, 易溶于水 。 ②双缩脉反应为阳性, 紫外吸收光谱在波长 200 一 24n0 m 处有强吸收峰。 ③pH 值 6一 7 。 ④比重 ( d器 ) 1 . 000 一 1. 05 0。 ⑤蛋 白质含量: ) 14 % 。 ⑥氨基酸: 共 17 种, 每 而 中含 87 m g 以上 。 ⑦灰分: 1% 以下 。 ⑧重金属汞 、 砷 、 铅分别在 1即m 以下。 ⑨细菌总数 (个nill ) 簇 10 。 L粪大肠杆菌、 绿脓杆菌、 金黄色葡萄球菌 均不得检出。 .2 2 质t 指标: 丝 素肤是由天然蚕丝经特殊工 艺提取而成 , 因此 , 氨基酸组成与含量是衡量产 品质量的重要指标之一 : 而丝 素肤分子量的大小与护肤功效的发挥又有着密切的联系, 表 1 、 2 列举 了国内外同类产品的分析测试结果。
四 : 蚕丝蛋白是什么?
蚕丝蛋白是什么?
有些什么性质
蚕丝蛋白,又叫丝素蛋白是从蚕丝中提取的天然高分子纤维蛋白,含量约占蚕丝的70%~80%,含有18种氨基酸,其中甘氨酸(gly)、丙氨酸(ala)和丝氨酸(ser)约占总组成的80%以上.丝素本身具有良好的机械性能和理化性质,如良好的柔韧性和抗拉伸强度、透气透湿性、缓释性等,而且经过不同处理可以得到不同的形态,如纤维、溶液、粉、膜以及凝胶等.
本文标题:蚕丝蛋白-蚕丝蛋白:蚕丝蛋白-概述,蚕丝蛋白-蚕丝蛋白61阅读| 精彩专题| 最新文章| 热门文章| 苏ICP备13036349号-1