61阅读

高中数学优秀说课稿-高中数学立体几何《两个平面垂直的判定定理》优秀说课稿模板

发布时间:2017-11-11 所属栏目:小学数学优秀说课稿

一 : 高中数学立体几何《两个平面垂直的判定定理》优秀说课稿模板

  1、教材结构与内容简析:

  1.1本节内容在全书及章节的地位;

  两平面垂直的判定定理出现在高中立几第一章最后一节,这之前学生已学习了空间两直线位置关系,空间直线和平面位置关系,特别是已学习了直线和平面垂直判定定理,二面角的平面角,这是学习本节内容的基础,而本节内容是第二章多面体、旋转体的学习基础,因此,本节的学习有着极其重要的地位。

  1.2数学思想方法分析:

  1.2.1从定理的证明过程,面面垂直可转化为线面垂直,就可以看到数学的化归,"降维"思想。

  1.2.2在教材所提供的材料中,从建构手段角度分析,可以看到归纳思想,而这一思想中包含着重组的意识和能力。

  2、教学目标:

  根据上述教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:

  2.1基础知识目标:掌握平面与平面垂直的判定定理及其变

  式,能利用它们解决相关的问题。

  2.2能力训练目标:逐步培养学生观察、分析、综合和类比能力,会准确地阐述自己的思路和观点,着重培养学生的认知和元认知能力。

  2.3创新素质目标:引导学生从日常生活中发现判定定理,培养学生的发现意识和能力;判定定理及变式的教学培养学生的重组意识和能力;判定定理在现实生活中的应用培养学生的应用的意识和能力。

  2.4个性品质目标:培养学生勇于探索,善于发现,独立的意识,不断超越自我的创新品质。

  3、教学重点、难点、关键:

  重点:判定定理的证明及变式探索

  难点:判定定理的变式。

  关键:本节课通过判定定理的证明及变式探索,着重培养和发展学生的认知和元认知能力。

  4、教材处理

  建构主义学习理论认为,建构即认知结构的组建,其过程一般是先把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线联构成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知识体。本课时为何提出变式呢,应该说,这一处理方法正是基于此理论的体现。其次,本节课处理过程力求达到解决如下问题:知识是如何产生的?如何发展?又如何从实际问题抽象成数学问题,并赋予抽象的数学符号和表达式,如何反映生活中客观事物之间简单的和谐关系。

  5、教学模式

  遵循教学过程是教师活动和学生活动的十分复杂的动态性总体,是教师和每一个学生积极参与下进行集体认识的过程,教为主导,学为主体,又互为客体,启动学生主动学习,启发引导学生实践思维过程,自得知识,自觅规律,自悟原理,主动发展思维和能力。

  6、学法

  6.1让学生在认知过程中,着重掌握元认知过程:

  6.2使学生把独立思考与多向交流相结合。

  7、教学程序及设想

二 : 初中数学优秀说课稿

关于 的说课稿
各位老师你们好!今天我要为大家讲的课题是
首先,我对本节教材进行一些分析:
一、 教材分析(说教材):
1. 教材所处的地位和作用:
本节内容在全书和章节中的作用是:《 》是 中数学教材第 册第 章第 节内容。在此之前学生已学习了 基础,这为过渡到本节的学习起着铺垫作用。本节内容是在 中,占据 的地位。以及为其他学科和今后的学习打下基础。
2. 教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标: (2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,(3)情感目标:通过 的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。
3. 重点,难点以及确定依据:
下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:
二、 教学策略(说教法)
1. 教学手段:
如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点: 应着重采用 的教学方法。
2. 教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
3. 学情分析:(说学法)
(1) 学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散
(2) 知识障碍上:知识掌握上,学生原有的知识 ,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍,知识 学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。
(3) 动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力
最后我来具体谈谈这一堂课的教学过程:
4. 教学程序及设想:
(1)由 引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。
(2)由实例得出本课新的知识点
(3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。
(4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。
(5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。
(6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。
(7)板书
(8)布置作业。
针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,
教学程序:课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分

三 : 高中数学《正弦定理》优秀说课稿范文

  教材地位与作用:

  本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理的知识非常重要。

  学情分析:

  作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。

  教学重点:正弦定理的内容,正弦定理的证明及基本应用。

  教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

  (根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)

  教学目标分析:

  知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。

  能力目标:探索正弦定理的证明过程,用归纳法得出结论。

  情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。

  教法学法分析:

  教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。

  学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。

  教学过程

  (一)创设情境,布疑激趣

  “兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠a=47°,∠b=53°,ab长为1m,想修好这个零件,但他不知道ac和bc的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

  (二)探寻特例,提出猜想

  1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

  2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

  3.让学生总结实验结果,得出猜想:

  在三角形中,角与所对的边满足关系

  这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

  (三)逻辑推理,证明猜想

  1.强调将猜想转化为定理,需要严格的理论证明。

  2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

  3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

  4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

  (四)归纳总结,简单应用

  1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

  2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

  3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

  (五)讲解例题,巩固定理

  1.例1。在△abc中,已知a=32°,b=81.8°,a=42.9cm.解三角形.

  例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

  2.例2.在△abc中,已知a=20cm,b=28cm,a=40°,解三角形.

  例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

  (六)课堂练习,提高巩固

  1.在△abc中,已知下列条件,解三角形.

  (1)a=45°,c=30°,c=10cm(2)a=60°,b=45°,c=20cm

  2.在△abc中,已知下列条件,解三角形.

  (1)a=20cm,b=11cm,b=30°(2)c=54cm,b=39cm,c=115°

  学生板演,老师巡视,及时发现问题,并解答。

  (七)小结反思,提高认识

  通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

  1.用向量证明了正弦定理,体现了数形结合的数学思想。

  2.它表述了三角形的边与对角的正弦值的关系。

  3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

  (从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)

  (八)任务后延,自主探究

  如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。

  (九)作业布置

  p10习题1.1a组习题1。

本文标题:高中数学优秀说课稿-高中数学立体几何《两个平面垂直的判定定理》优秀说课稿模板
本文地址: http://www.61k.com/1088857.html

61阅读| 精彩专题| 最新文章| 热门文章| 苏ICP备13036349号-1