61阅读

苏教版梅兰芳学艺课件-《梅兰芳学艺》第二课时教学设计

发布时间:2017-09-21 所属栏目:鲸第二课时教学设计

一 : 《梅兰芳学艺》第二课时教学设计

【教学目标】
1、学会3个生字:紧、注、视,1个新偏旁。理解词语:没有神儿、灵活、会说话,勤学苦练。
2、学会联系上下文理解词语,学会用“终于”说话。
3、学习梅兰芳勤学苦练的精神,明白勤能补拙的道理;并对梅兰芳及京剧艺术心怀好奇和敬仰。
【教学重点与难点】理解第二自然段,体会梅兰芳苦练眼神的经历。
【教学准备】课件、词语卡片
【教学过程】
一、导入,找到主线
1、读词“眼睛”。
2、小朋友们,眼睛是心灵的窗户,在生活中,你见过怎样的眼睛?
3、上一节课,我们学习了《梅兰芳学艺》,梅兰芳有一双怎样的眼睛?
轻声读一读课文,把描写梅兰芳眼睛的词语或短语圈出来!
生汇报,教师贴词语卡片:没有神儿 灵活 会说话。
4、指名读,齐读。
【设计意图】
教学一篇课文,必须抓住一条主线。《梅兰芳学艺》这篇课文的主线又是什么呢?经过研读文本,我挖掘出“眼睛”这条主线,而且梅兰芳的眼睛从“没有神儿”变得“灵活”、“会说话”了,因此在设计时,我紧扣 “眼睛”及其变化展开。
二、突出主线,激发疑问
1、梅兰芳的眼睛没有神儿,谁谁这样说?
请你把词语放进句子读一读。
ppt:梅兰芳小时候去拜师学艺,师傅说他的眼睛没有神儿,不是唱戏的料子。
(1)指名读,齐读。
(2)师简介:是啊,梅兰芳8岁就去拜师学艺,(ppt出示梅兰芳小时候的照片)你看,梅兰芳小时候就是近视眼,眼皮有点下垂,眼珠转动也不灵活,见了风还流泪。要知道,想当一名京剧演员,一双灵活的、会说话的眼睛可是最基本、最重要的啊!如果你是师傅,见到这样一个前来求学的孩子,你想对他说些什么?
(3)是啊,当时的师傅的确这样说:“言不出众,貌不惊人。祖师爷没给你这碗饭吃!”
(4)再读这一句话。
2、过渡:可是,却也有人评价梅兰芳的眼睛“灵活”“会说话”,你能把这些词语放进课文的句子读一读吗?指名读,齐读句子。
ppt出示句子:
日子一长,梅兰芳的双眼渐渐灵活起来。
人们都说,梅兰芳的眼睛会说话了。
3、质疑:咦,为什么有人说梅兰芳的眼睛“没有神儿”,又有人说他的眼睛“灵活”“会说话”?板书问号。
学生思考回顾课文后初步作答。
【设计意图】
在理解了梅兰芳的眼睛“没有神儿”、“灵活”、“会说话”后,教师提出问题:为什么有人说梅兰芳的眼睛“没有神儿”,又有人说他的眼睛“灵活”“会说话”?学生带着强烈的探究欲望迅速地完成了个人的阅读行为,感知了内容,为阅读教学奠定了基础。
三、细读文本,理解眼睛的“变化”
1、梅兰芳的眼睛又是怎么会从“没有神儿”变为“灵活”甚至“会说话”了呢?
找到答案,大声读一读。
ppt出示第二自然段。
2、虽然师傅说,但是梅兰芳——。说话:是啊,梅兰芳没有灰心,他暗暗下了决心,他在心里想……
指名说话,理解“决心没有动摇”。
3、他又是怎么做的呢?
(1)理解词义“紧盯”“注视”。
指名读句子。
a、理解“紧盯”、“注视”的基本含义:看
师述:梅兰芳所做的事情就是 “看”。哪一个词语表示看的意思?
学生回答“紧盯”,学生补充回答“注视”。
师述:原来“紧盯”、“注视”这两个词语的意思差不多,都表示看。
b、“紧盯”、“注视”与“看”的辨析
ppt出示:梅兰芳常常看看空中飞翔的鸽子,或者看看水底游动的鱼儿。
换成这样的说法,行吗?
c、师述:“紧盯”、“注视”不是一般的看,不是随随便便地看,那是怎样地看?ppt出示( )地看。
指名回答。
(2)活动,体验
a、“紧盯、注视”着静止的教具。教师简述:梅兰芳练眼神之初就是这样紧盯、注视静止的树叶,看穿看透。
b、梅兰芳的眼睛变大了,变得有神了,可在京剧表演中,这还远远不够。梅兰芳养了一群鸽子,每天早上放飞鸽群,你看,鸽子越飞越高、越飞越远,梅兰芳还是紧紧盯着……
播放鸽群飞舞的录像。
c、眼睛酸痛的请举手示意,指名谈感受。
d、我们只是练习了一会儿,而梅兰芳是“常常”。齐读句子。
(3)梅兰芳这么勤奋地学习,这么刻苦地练习,课文中有个词就是这个意思,你能找到吗?学生回答,勤学苦练(教师板书)
师述:
是啊,当小伙伴们在尽情玩耍的时候,梅兰芳在(引读:勤学苦练);
当一起拜师学艺的同伴已经登台演出的时候,梅兰芳还在(引读:勤学苦练)。
4、这样日复一日,年复一年,日子一长,多长呢,经过10年的勤学苦练,梅兰芳的双眼渐渐(引读),人们都说梅兰芳的眼睛(引读)
(1)嘴巴会说话,眼睛怎么会说话呢?学生回答。
(2)梅兰芳在舞台上表演了五十多年,扮演了很多角色。有一次,他扮演的角色内心非常愤怒,你能扮演梅兰芳用眼神来表示吗?还有一次,他扮演的角色十分喜悦,你能用眼神演一演吗?(指名表演。)
5、小结,释疑
梅兰芳的眼睛怎么会从“没有神儿”变为“灵活”、“会说话”了呢?
揭示“勤能补拙”。
【设计意图】
“他常常紧盯空中飞翔的小鸟,或者注视水底游动的鱼儿”在这句话中,引导学生抓住"紧盯/注视"这对近义词,通过表演的方式,学生在具体的语言环境中理解了词义,并通过语言文字体会到梅兰芳苦练眼神的坚定决心,用朗读来表达。然后以此为基石,引导学生懂得正是因为这样的勤奋,他的“双眼渐渐灵活起来”,“人们都说梅兰芳的眼睛会说话了”。结合练习六里的成语“勤能补拙”,深化对文本的理解。
四、补充材料、深化文本
1、是啊,经过勤学苦练,梅兰芳的眼睛终于会说话了。可梅兰芳学艺,练眼神还只是第一步,要表演好京剧,还需要唱、念、打各方面基本功的训练。梅兰芳学艺过程中,经过怎样的努力,终于取得了哪些进步呢?打开阅读纸,ppt出示。自己阅读。
梅兰芳练唱也很勤奋,他每天一大早就去练嗓子,不管是在骄阳似火的盛夏还是滴水成冰的寒冬,他都坚持练习,他的嗓音渐渐变得响亮、悦耳。就这样,他练出了一副好嗓子。
再说背戏词吧,他常常一背就是二三十遍,直到夜深人静。背得睡着了,猛地惊醒,他爬起来继续背,天天如此,年年如此。就这样,他把戏词背得滚瓜烂熟。
用“经过……终于……”说话
2、是啊,经过这么多的勤学苦练,梅兰芳终于成为“世界闻名”的京剧“大师”!
教师简介:梅兰芳在舞台上表演了五十多年,扮演了很多角色。语文书上的这幅图就是梅兰芳在《贵妃醉酒》中扮演的杨贵妃,她还扮演过《霸王别姬》中的虞姬,《穆桂英挂帅》中的穆桂英等的角色。梅兰芳表演的京剧全国人民都爱看,当时毛主席,周总理也特别爱看,这是周恩来总理与梅兰芳的合影。梅兰芳表演的京剧不仅中国人爱看,全世界人民也喜欢看。这是他和国际友人演出的照片。梅兰芳还把京剧带给了全世界的人民,全世界的人一提到中国,就知道京剧艺术,就知道梅兰芳。
【设计意图】
通过研读文本,我发现课文的二、三自然段之间留有空白。在梅兰芳学艺的过程中,练眼神只是其中的一个故事,因此在教学设计中补充了练嗓子、背戏词的简短资料,分组阅读,目的有三:一是资料的丰富,让梅兰芳的形象在学生心中更丰满;二是为用“终于”说话提供材料(经过勤学苦练,梅兰芳的眼睛终于会说话了;经过勤学苦练,梅兰芳……);三是为教学第三自然段“经过勤学苦练,梅兰芳终于成为世界闻名的京剧大师。”做好铺垫,完成了补白。
“教材只是个例子”,应该通过教材的学习让学生感悟、识记、品味语言。将行动转化为语言文字,或将文字转化为动作,都是在指导学生正确地理解和运用语言文字,从而丰富语言积累、培养语感、发展思维,这是非常有益的语文实践性活动。此处设计意图也即为此。
五、学习生字
1、梅兰芳是怎样练眼神的?
出示:他常常紧盯空中飞翔的鸽子,或者注视水底游动的鱼儿。
2、提出生字:紧 注 视
紧:教学新偏旁,书空偏旁。记忆字形。师范写。生仿影、临写。
注:引导学生通过左右部件相加记忆,或者通过熟字“住”、“往”来记忆。
视:引导学生通过左右部件相加记忆,或者通过熟字“觉”、“现”、“观”来记忆。
六、作业
1、读一读梅兰芳的故事,如《梅兰芳练功》《看戏》等。
2、看一看梅兰芳的京剧表演。
3、 勤能补拙 笨鸟先飞 人一己百 奋起直追
背一背,再收集激励我们勤学苦练的成语、谚语。
【板书设计】
14、梅兰芳学艺
灵活
勤学苦练
没有神儿
会说话

二 : 94高铁梅老师的EVIEWS教学课件VAR VECM

第二十章 向量自回归和误差修正模型

联立方程组的结构性方法是用经济理论来建立变量之间关系的模型。但是,经济理论通常并不足以对变量之间的动态联系提供一个严密的说明。并且,内生变量既可以出现在等式的左端又可以出现在等式的右端使得估计和推断更加复杂。为解决这些问题产生了一种用非结构性方法来建立各个变量之间关系的模型。就是这一章讲述的向量自回归模型(Vector Auto regression, VAR)以及向量误差修正模型(Vector Error Correction, VEC)的估计与分析。同时给出一些检验几个非稳定变量之间协整关系的工具。

§20.1 向量自回归理论

向量自回归(VAR)常用于预测相互联系的时间序列系统以及分析随机扰动对变量系统的动态影响。VAR方法通过把系统中每一个内生变量作为系统中所有内生变量的滞后值的函数来构造模型,从而回避了结构化模型的需要。一个VAR(p) 模型的数学形式是:

yt?A1yt?1?????Apyt?p?Bxt??t (20.1) 这里yt是一个k维的内生变量,xt是一个d维的外生变量。A1,???,AP和B是要被估计的系数矩阵。?t是扰动向量,它们相互之间可以同期相关,但不与自己的滞后值相关及不与等式右边的变量相关。 作为VAR的一个例子,假设工业产量(IP)和货币供应量(M1)联合地由一个双变量的VAR模型决定,并且让常数为唯一的外生变量。内生变量滞后二阶的VAR(2)模型是:

IPt?a11IPt?1?a12M1t?1?b11IPt?2?b12M1t?2?C1??1,t

M1t?a2,1IPt?1?a22M1t?1?b21IPt?2?b22M1t?2?C2??2,t (20.2) 其中,aij,bij,ci是要被估计的参数。也可表示成:

?IPt??a11a12??IPt?1??b11b12??IPt?2??C1???1?????????? ???????a????????M1?????????t??21a22??M1t?1??b21b22??M1t?2??C2???2?

§20.2 估计VAR模型及估计输出

选择Quick/Estimate VAR…或者在命令窗口中键入var,并在出现对话框内添入适当的信息:

1.选择说明类型:Unrestricted VAR(无约束向量自回归)或者Vector Error Correction(向量误差修正)

2.设置样本区间。

3.在适当编辑框中输入滞后信息。这一信息应被成对输入:每一对数字描述一个滞后区间。

4.在相应的编辑栏中输入适当的内生及外生变量。

§20.3 VAR视图和过程

在VAR窗口的View/Lag Structure和View/Residual Tests菜单下将提供一系列的诊断视图。

(一)Lag Structure(滞后结构)

1.AR Roots Table/Graph(AR 根的图表)

2.Pairwise Granger Causality Tests(Granger 因果检验)

Granger 因果检验主要是用来检验一个内生变量是否可以作为外生变量对待。

3.Lag Exclusion Tests(滞后排除检验)

4.Lag Length Criteria(滞后长度标准)

(二)Residual Tests(残差检验)

1.相关图

显示VAR在指定的滞后数的条件下的被估计的残差交叉相关图(样本自相关)。交叉相关图能以三种形式显示:(1)Tabulate by Variable;(2)Tabulate by Lag;(3)Graph。

2.自相关检验

计算与指定阶数所产生的残差序列相关的多变量Q统计量,同时计算出Q统计量和调整后的Q统计量。在原假设是滞后h期没有序列相关的条件下,两个统计量都近似的服从自由度为k(h?p)的?统计22

量,其中p为滞后阶数。

3.自相关LM检验:计算与指定阶数所产生的残差序列相关的多变量LM检验

4.正态检验:计算J-B残差正态检验的多变量范围。

5. White 异方差检验

这些检验是针对系统方程的White’s检验范围,这个回归检验是通过残差序列每一个回归量交叉项乘积的回归来实现的,并检验回归的显著性。

No Cross Terms选项仅仅用于原始回归量的水平和平方检验。

With Cross Terms选项包括被检验方程中原始回归变量所有的非多余的交叉乘积。

§20.4 脉冲响应函数

(一)脉冲响应函数方法

对第i个变量的冲击不仅直接影响第i个变量,并且通过VAR模型的动态结构传导给所有的其它内生变量。脉冲响应函数刻画的是在一个扰动项上加上一次性的一个冲击,对内生变量的当前值和未来值所带来的影响。设VAR(p)模型为

yt?A1yt?1???Apyt?p??t (20.9)

这里yt是一个k维内生变量向量,?t是方差为?的扰动向量。yt的VMA(∞)的表达式

yt?(?0I??1L??2L2??)?t

则y的第i个变量yit可以写成: (20.10) 假如VAR(p)可逆,yt的VMA的系数可以由VAR的系数得到。设?q?(?q,ij),q =1 , 2 , 3 ,….. ,

kyit??(?0,ij?jt??1,ij?jt?1??2,ij?jt?2??3,ij?jt?3???) (20.12) j?1

其中k是变量个数。下面仅考虑两个变量(k=2)的情形:

?y1t???0,11?0,12???1,t???1,11?1,12???1,t?1???2,11?2,12???1,t?2????????y???????????????????????????????? ???0,22??2,t?1,22??2,t?1?2,22??2,t?2??2t??0,21?1,21?2,21

现在假定在基期给y1一个单位的脉冲,即:

?1t??

?1,?0,t?0

else?t ?2t?0,

由y1的脉冲引起的y2的响应函数:?0,21,?1,21,?2,21?

因此,一般地,由对yj的脉冲引起的yi的响应函数可以求出如下:

?0,ij,?1,ij,?2,ij,?3,ij,?4,ij,??

(二)由VAR产生脉冲响应函数

从VAR工具栏中选择Impulse Response…,得到的对话框,有两个菜单:

1.Display菜单提供下列选项:

Display Format :选择以图或表来显示结果。

Display Information :输入希望产生扰动的变量和希望观察其脉冲响应的变量。为了显示累计的响应,需要选中Accumulate Response框。

Response Standard Error:提供计算脉冲响应标准误差的选项。

2.Impulse Definition菜单提供了转换脉冲的选项:

(1)Residual-One Unit 设置一单位残差的冲击。

(2)Residual-One Std.Dev. 设置残差的一单位标准偏差的冲击。

(3)Cholesky 用正交于脉冲的Cholesky 因子的残差协方差矩阵的逆。

d.f.adjustment:在估计的残差协方差矩阵除以Cholesky 因子时进行小样本的自由度修正。

no d.f.adjustment:在估计的残差协方差矩阵除以Cholesky 因子时不进行小样本的自由度修正。

(4)Generalized Impluses:描述Pesaran和Shin(1998)构建的不依赖于VAR中等式的次序的正交的残差矩阵。

(5)Structural Decomposition:用结构因子分解矩阵估计的正交转换矩阵。

6.User Specified:在这个选项中允许自己定义冲击。

§20.5 方差分解

脉冲响应函数描述的是VAR中的一个内生变量的冲击给其他内生变量所带来的影响。而方差分解是把内生变量中的变化分解为对VAR的分量冲击。因此,方差分解给出对VAR中的变量产生影响的每个随机扰动的相对重要性的信息。

一、方差分解的基本思路

(20.12)式中各括号()中的内容是第j个扰动项?j从无限过去到现在时点对第i个变量yi影响的总和。求其方差,因为{?jt}无序列相关,故

E[(?0,ij?jt??1,ij?jt?1??2,ij?jt?2??)]??(?q,ij)2?jj j = 1 ,2 ,...,k (20.17) q?02?

这是把第j个扰动项对第i个变量的从无限过去到现在时点的影响,用方差加以评价的结果。此处还假定扰动项向量的协方差矩阵?是对角矩阵。于是yit的方差rii(0)是上述方差的k项简单和

var(yit)?rii(0)??{?(?q,ij)2?jj} (20.19) j?1q?0k?

yit的方差可以分解成k种不相关的影响,因此为了测定各个扰动相对yit的方差有多大程度的贡献,定义了RVC(Relative Variance Contribution)(相对方差贡献率),根据第j个变量基于冲击的方差对yit的方差的相对贡献度来作为观测第j个变量对第i个变量影响的尺度。实际上,不可能用直到s=∝的?k,ij来评价,只需有限的s项。

s?1

RVCj??i(s)?q?0

k?(?q,ij)2?jjs?1 i ,j = 1 , 2,…,k (20.22)

?{?(?q,ij)2?jj}j?1q?0

如果RVCj??i(s)大时,意味着第j个变量对第i个变量的影响大,相反地,RVCj??i(s)小时,可以认为第j个变量对第i个变量的影响小。

二、如何由VAR计算方差分解

从VAR的工具栏中选View/Variance decomposition项。应当提供和上面的脉冲响应函数一样的信息。

§20.6 VAR过程

在这里仅就对VAR是唯一的过程进行讨论。Make Systerm:产生一个包括等同于VAR详细定义的对象。By Variable选项产生一个系统,其详细的说明和系数的显示是以变量的次序来显示。By Lag 产生一个以滞后数的次序来显示其详细的说明和系数的系统。

§20.7 向量误差修正及协整理论

Engle和Granger(1987a)指出两个或多个非平稳时间序列的线性组合可能是平稳的。假如这样一种平稳的或I(0)的线性组合存在,这些非平稳(有单位根)时间序列之间被认为是具有协整关系的。这种平稳的线性组合被称为协整方程且可被解释为变量之间的长期均衡关系。

向量误差修正模型(VEC)是一个有约束的VAR模型,并在解释变量中含有协整约束,因此它适用于已知有协整关系的非平稳序列。当有一个大范围的短期动态波动时,VEC表达式会限制内生变量的长期行为收敛于它们的协整关系。因为一系列的部分短期调整可以修正长期均衡的偏离,所以协整项被称为是误差修正项。一个简单的例子:考虑一个两变量的协整方程并且没有滞后的差分项。协整方程是:

y2,t???y1,t

且VEC是:

?y1,t??1(y2,t?1???y1,t?1)??1,t

?y2,t??2(y2,t?1???y1,t?1)??2,t

在这个简单的模型中,等式右端唯一的变量是误差修正项。在长期均衡中,这一项为0。然而,如果y1,y2在上一期偏离了长期均衡,则误差修正项非零并且每个变量会进行调整以部分恢复这种均衡关系。系数?1,?2代表调整速度。

如果两个内生变量y1,t和y2,t不含趋势项并且协整方程有截距,则VEC有如下形式:

?y1,t??1(y2,t?1?????y1,t?1)??1,t

?y2,t??2(y2,t?1?????y1,t?1)??2,t

另一个VEC表达式假设在序列中有线性趋势并且在协整方程中有常数,因此它的形式如下:

?y1,t??1??1(y2,t?1?????y1,t?1)??1,t

?y2,t??2??2(y2,t?1?????y1,t?1)??2,t

相似地,协整方程中可能有趋势项,但在两个VEC方程中没有趋势项。

?y1,t??1??1(y2,t?1????1t???y1,t?1)??1,t

?y2,t??2??2(y2,t?1????1t???y1,t?1)??2,t

最后,如果在每个VEC等式的括号外存在线性趋势项,那么序列中便存在着隐含的二次趋势项。 ?y1,t??1??1t??1(y2,t?1????1t???y1,t?1)??1,t

?y2,t??2??2t??2(y2,t?1????1t???y1,t?1)??2,t

§20.8 协整检验

协整检验从检验的对象上可以分为两种:一种是基于回归系数的协整检验,如下面将要介绍的Johansen协整检验。另一种是基于回归残差的协整检验,如ADF检验。

(一)ADF检验

考虑k个I(1)变量的时间序列y1t,y2t,?,ykt,k?1,t?1,2,?,T,我们可以建立三种回归方程: y1t???

j?2kjyjt?ut (20.28)

k

j y1t?a0???

j?2yjt?ut (20.29)

y1t?a0?a2t???

j?2kjyjt?ut (20.30)

?t,对u?t进行单位根检验,从而其中ut为扰动项。在EViews中执行ADF协整检验,须先计算残差u

确定y1t,y2t,?,ykt之间是否有协整关系。

(二)Johansen协整检验

协整检验的目的是决定一组非稳定序列是否是协整的。考虑阶数为p的VAR模型:

yt?A1yt?1?????Apyt?p?Bxt??t (20.31) 其中,yt是一个含有非平稳的I (1)变量的k维向量;xt是一个确定的d维的向量,?t是扰动向量。我们可把VAR重写为以下形式:

?yt??yt?1?

p???yii?1p?1t?i?Bxt??t (20.32)

其中: ??

?A?I, ?ii?1i???Aj (20.33) j?i?1p

Granger定理指出:如果系数矩阵∏的秩r?k,那么存在k?r阶矩阵?和?,它们的秩都是r,使得?????,并且??yt是稳定的。其中r是协整关系的数量(协整秩)并且?的每列是协整向量。正如下面解释,?中的元素是向量误差修正模型VEC中的调整参数。Johansen方法是在无约束VAR的形式下估计?矩阵,然后求出?,从而检验出协整秩,(秩(?)?r?k),得出协整向量。为了完成协整检验,从VAR或组的工具栏中选择View/Cointegration Test…即可。

EViews对Johansen考虑的下面五种可能的决定趋势形式提供了检验

(1)序列y没有确定趋势,协整方程没有截距:

H2(r):?yt?1?Bxt????yt?1

(2)序列y没有确定趋势,协整方程有截距:

H1(r):?yt?1?Bxt??(??yt?1??0)

(3)序列y有线性趋势,协整方程仅有截距:

H1(r):?yt?1?Bxt??(??yt?1??0)

(4)序列y和协整方程都有线性趋势:

H?(r):?yt?1?Bxt??(??yt?1??0??1t)???

(5)序列y有二次趋势且协整方程有线性趋势:

H(r):?yt?1?Bxt??(??yt?1??0??1t)???(?????0 ?0 ?0??1t)

Johansen协整检验结果的解释:表中第一部分的报告结果检验了协整关系的数量,并以两种检验统计量的形式显示:第一种检验结果是所谓的迹统计量,列在第一个表格中:第二种检验结果是最大特征值统计量;列在第二个表格中。对于每一个检验结果,第一列显示了在原假设成立条件下的协整关系数;第二列是(20.32)式中?矩阵按由大到小排序的特征值;第三列是迹检验统计量或最大特征值统计量;最后两列分别是在5%和1%水平下的临界值。

在迹统计量的输出中检验原假设是有r个协整关系,而不是k个协整关系,其中k是内生变量的个数,r=0 , 1 , …, k-1。对原假设是有r个协整关系的迹统计量是按如下的方法计算的:

LRtr(r|k)??T

i?r?1?log(1??i) (20.34) k

其中?i是(20.32)式中?矩阵的第i个最大特征值,在输出表的第二列显示。

最大特征值统计量的检验结果表,它所检验的原假设是有r个协整关系,反之,有r+1个协整关系。统计量是按下面的方法计算的:

LRmax(r|r?1)??Tlog(1??r?1)

?LRtr(r|k)?LRtr(r?1|k)r?0,1,?,k-1 (20.35)

§20.10 向量误差修正模型(VEC)的估计

VEC模型是一种受约束的VAR模型,是用已知协整的非稳定序列来定义的。

(一) 如何估计VEC模型为建立一个VEC,击VAR工具栏中的Estimate,然后从VAR/VEC Specification中选择Vector Error Correction项。在VAR/VEC Specification栏中,应该提供与无约束的VAR相同的信息。VEC的估计分两步完成:在第一步,从Johansen所用的协整检验估计协整关系;第二步,用所估计的协整关系构造误差修正项,并估计包括误差修正项作为回归量的一阶方差的VAR。

(二) VEC估计的输出包括两部分。第一部分输出第一步从Johansen程序所得的结果。第二部分输出从第一步之后以误差修正项作为回归量的一阶差分的VAR。

View/Cointegration Graph输出在VEC中所用的被估计的协整关系的曲线。为了保存这些协整关系作为工作表中以命名的序列,用Proc/Make Cointegration Group即可。

三 : 《梅兰芳学艺》教学设计

教学目标:
一、知识与能力:
1、学会“艺、决、盯、灵、活、于、成、京”六8个字,会认“拜、神、料、翔、勤、终、著”7个字。
2、正确流利地朗读课文。
二、情感态度与价值观:体会只有刻苦、专心、勤学苦练才能有真正的本领和学问。
三、过程与方法:练习使用小组合作学习法及联系生活实际的方法理解课文。
教具:生字卡片、实物投影仪
课时:1~2课时
教学过程:
基础备课
一、揭题导入:
1、观看戏曲大师梅兰芳的相关图片,激趣引入。
2、出示课题,指名读,齐读。
二、初读课文
1、自由读文,读准字音,不认识的字借助拼音读准。
2、用“”圈出课文后田字格中的生字:用“”画出双线中的生字。边找边读。同桌互相读。
3、检查认读情况。
4、把生字送回到课文中再读。注意把词语连贯,把课文读通顺。
5、指名读词语:时候 神儿 鱼儿
 注意轻声及连贯
三、指导朗读
1、生自由读文,标出自然段。
2、同坐合作读文,指名分段读文。
3、重点指导读第二自然段,选择最喜欢的一句话来读。
方法:小组赛、全班赛
四、课文延伸
读了这个故事,你想到了什么?
五、指导写字
1、征求大家意见:你认为什么字最难写?
2、“组装车间”的拆字和组字游戏。
方法:教师范写,学生抢答。
3、 观察字在田字格中的摆法,注重笔顺规则。
4、 学生练写,注意书写的正确姿势。
知识链接:
梅兰芳的相关资料。
本文标题:苏教版梅兰芳学艺课件-《梅兰芳学艺》第二课时教学设计
本文地址: http://www.61k.com/1058913.html

61阅读| 精彩专题| 最新文章| 热门文章| 苏ICP备13036349号-1