一 : 图像的对比度增强
图像的对比度增强
1.原理
增强图像对比度实际是增强原图的各部分的反差。实际中往往是通过增强原图里某两个灰度值间的动态范围来实现的。我选用的是书本上最典型的图像增强对比度。
如图所示,可以看出通过这样一个变换,原图中灰度值在0到s1和s2到L-1间的动态
范围减小了,而原图中灰度值在s1和s2间的动态范围增强了,从而这个范围内的对比度增
强了。实验中我选用的数值是s1=50,s2=120,t1=60,t2=100。
2.代码
void CImageProcessingDoc::OnImageContrast()
{
m_pDibInit->Save("r_temp1.bmp"); // TODO: Add your command handler code here int i,j; //循环变量 int m_Width, m_Height, m_SaveWidth; int t[256]={0},s[256]={0}; double s1=50,s2=120,t1=60,t2=100; m_Width = m_pDibInit->GetWidth(); m_Height = m_pDibInit->GetHeight(); m_SaveWidth = m_pDibInit->GetSaveWidth(); for(j=0;j<m_Height;j++) for(i=0;i<m_Width;i++) { if(m_pDibInit->m_pDibBits[j*m_SaveWidth + i]<s1)
m_pDibInit->m_pDibBits[j*m_SaveWidth + i]=(unsigned char) (m_pDibInit->m_pDibBits[j*m_SaveWidth + i]*(t1/s1));
else if(m_pDibInit->m_pDibBits[j*m_SaveWidth + i]>=s1||m_pDibInit->m_pDibBits[j*m_SaveWidth + i]<=s2)
m_pDibInit->m_pDibBits[j*m_SaveWidth + i]=(unsigned char)
((m_pDibInit->m_pDibBits[j*m_SaveWidth + i]-s1)*(t2-t1)/(s2-s1)+t1);
else if(m_pDibInit->m_pDibBits[j*m_SaveWidth + i]>s2)
m_pDibInit->m_pDibBits[j*m_SaveWidth + i]=(unsigned char) ((m_pDibInit->m_pDibBits[j*m_SaveWidth + i]-s2)*(255-t2)/(255-s2)+t2);
};
m_pDibInit->Save("r_temp2.bmp");
}
3.实验结果于分析
UpdateAllViews(NULL);
图1 图2
图1是原图,图2是增强图像对比度后得到的图像,实际中是s1,s2,t1,t2可以取不同的值进行组合,从而得到不同的效果,实验中我选用的数值是s1=50,s2=120,t1=60,t2=100。
如果s1=t1,s2=t2,则曲线为一条斜率等于1的直线,增强图像和原图相同。如下图所示:
图1 图2
如果t1=0,t2=L-1,则曲线为一条斜率大于1的直线,增强图中s1和s2间的灰度占满整个动态范围。如果s1=s2,t1=0,t2=L-1,则增强图只剩下两个灰度级,对比度最大但细节全被丢失了。
二 : 图像增强
1
2
3
三 : 图像增强:图像增强-图像增强imageenhancement,图像增强-图像增强的几
图像增强是计算机的一种术语。是将原来不清晰的图像变得清晰或强调某些感兴趣的特征,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果的图像处理方法。
图像增强_图像增强 -图像增强 image enhancement
增强图象中的有用信息,它可以是1个失真的过程,其目的是要改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。图像增强_图像增强 -图像增强的几个方面及方法
1.对比度变换:线性变换、非线性变换图像增强_图像增强 -图像增强的应用概况
数字图像处理在40多年的时间里,迅速发展成一门独立的有强大生命力的学科,图像增强技术已逐步涉及人类生活和社会生产的各个方面,下面我们仅就几个方面的应用举些例子。1.航空航天领域的应用
早在60年代初期,第3代计算机的研制成功和快速傅里叶变换的提出,使图像增强技术可以在计算机上实现。1964美国喷气推进实验室(JPL)的科研人员使用IBM7094计算机以及其它设备,采用集合校正、灰度变换、去噪声、傅里叶变换以及二维线性滤波等方法对航天探测器“徘徊者7号”发回的几千张月球照片成功的进行了处理。随后他们又对“徘徊者8号”和“水手号”发回地球的几万张照片进行了较为复杂地数字图像处理,使图像质量得到进1步的提高,从此图像增强技术进入了航空航天邻域的研究与应用。同时图像增强技术的发展也推动了硬件设备的提高,比如1983年LANDSAT-4的分辨率为30m,而如今发射的卫星分辨率可达到3-5m的范围内。图像采集设备性能的提高,使采集图像的质量和数据的准确性和清晰度得到了极大地提高。2.生物医学领域的应用
图像增强技术在生物医学方面的应用有2类,其中1类是对生物医学的显微光学图像进行处理和分析,比如对红细胞、白细胞、细菌、虫卵的分类计数以及染色体的分析;另1类应用是对X射线图像的处理,其中最为成功的是计算机断层成像。1973年英国的EMI公司在制造出第一台X射线断层成像装置。由于人体的某些组织,比如心脏、乳腺等软组织对X射线的衰减变化不大,导致图像灵敏度不强。由此图像增强技术在生物医学图像中得到广泛的应用。3.工业生产领域的应用
图像增强在工业生产的自动化设计和产品质量检验中得到广泛应用,比如机械零部件的检查和识别、印刷电路板的检查、食品包装出厂前的质量检查、工件尺寸测量、集成芯片内部电路的检测等等。此外计算机视觉也可以应用到工业生产中,将摄像机拍摄图片经过增强处理、数据编码、压缩送入机器人中,通过一系列的控制和转换可以确定目标的位置、方向、属性以及其它状态等,最终实现机器人按照人的意志完成特殊的任务。4.公共安全领域的应用
在社会安全管理方面,图像增强技术的应用也十分广泛,如无损安全检查、指纹、虹膜、掌纹、人脸等生物特征的增强处理等等。图像增强处理也应用到交通监控中,通过电视跟踪技术锁定目标位置,比如对有雾图像、夜视红外图像、交通事故的分析等等。图像增强_图像增强 -图像增强的研究目的和意义
人类传递信息的主要媒介是语言和图像。据统计在人类接受的各种信息中视觉信息占80%,所以图像信息是十分重要的信息传递媒体和方式。图像传递系统包括图像采集、图像压缩、图像编码、图像存储、图像通信、图像显示这6个部分。在实际应用中每个部分都有可能导致图像品质变差,使图像传递的信息无法被正常读取和识别。例如,在采集图像过程中由于光照环境或物体表面反光等原因造成图像整体光照不均,或是图像采集系统在采集过程中由于机械设备的缘故无法避免的加入采集噪声,或是图像显示设备的局限性造成图像显示层次感降低或颜色减少等等。因此研究快速且有效地图像增强算法成为推动图像分析和图像理解领域发展的关键内容之一。图像增强_图像增强 -图像增强技术国外发展状况
20世纪20年代图片第一次通过海底电缆从伦敦传往纽约。当时人们通过字符模拟得到中间色调的方法来还原图像。早期的图像增强技术往往涉及硬件参数的设置,如打印过程的选择和亮度等级的分布等问题。在1921年年底提出了1种基于光学还原的新技术。在这一时期由于引入了1种用编码图像纸带去调制光束达到调节底片感光程度的方法,使灰度等级从五个灰度级增加到十五个灰度等级,这种方法明显改善了图像复原的效果。到20世纪60年代早期第一台可以执行数字图像处理任务的大型计算机制造出来了,这标志着利用计算机技术处理数字图像时代的到来。1964年,研究人员在美国喷气推进实验室(JPL)里使用计算机以及其它硬件设备,采用几何校正、灰度变换、去噪声、傅里叶变换以及二维线性滤波等增强方法对航天探测器“徘徊者7号”发回的几千张月球照片进行处理,同时他们也考虑太阳位置和月球环境的影响,最终成功地绘制出了月球表面地图。随后他们又对1965年“徘徊者8号”发回地球的几万张照片进行了较为复杂的数字图像处理,使图像质量进1步提高。这些成绩不仅引起世界许多有关方面的注意而且JPL本身也更加重视对数字图像处理地研究和设备的改进,并专门成立了图像处理实验室IPL。在IPL里成功的对后来探测飞船发回的几十万张照片进行了更为复杂的图像处理,最终获得了月球的地形图、彩色图以及全景镶嵌图。从此数字图像增强技术走进了航空航天领域。图像增强_图像增强 -图像增强技术国内发展状况
在借鉴国外相对成熟理论体系和技术应用体系的条件下,国内的增强技术和应用也有了很大的发展。总体来说,图像增强技术的发展大致经历了初创期、发展期、普及期和应用期四个阶段。初创期开始于20世纪60年代,当时的图像采用像素型光栅进行扫描显示,大多采用中、大型机对其进行处理。在这一时期由于图像存储成本高,处理设备造价高,因而其应用面很窄。20世纪70年代进入了发展期,开始大量采用中、大型机进行处理,图像处理也逐渐改用光栅扫描显示方式,特别是出现了CT和卫星遥感图像,对图像增强处理提出了1个更高的要求。到了20世纪80年代,图像增强技术进入普及期,此时的计算机已经能够承担起图形图像处理的任务。20世纪90年代进入了应用期,人们运用数字图像增强技术处理和分析遥感图像,以有效地进行资源和矿藏的勘探、调查、农业和城市的土地规划、作物估产、气象预报、灾害及军事目标的监视等。在生物医学工程方面,运用图像增强技术对X射线图像、超声图像和生物切片显微图像等进行处理,提高图像的清晰度和分辨率。在工业和工程方面,主要应用于无损探伤、质量检测和过程自动控制等方面。在公共安全方面,人像、指纹及其他痕迹的处理和识别,以及交通监控、事故分析等都在不同程度上使用了图像增强技术。图像增强是图像处理的重要组成部分,传统的图像增强方法对于改善图像质量发挥了极其重要的作用。随着对图像技术研究的不断深入和发展,新的图像增强方法不断出现。例如一些学者将模糊映射理论引入到图像增强算法中,提出了包括模糊松弛、模糊熵、模糊类等增强算法来解决增强算法中映射函数选择问题,并且随着交互式图像增强技术的应用,可以主观控制图像增强效果。同时利用直方图均衡技术的图像增强也有许多新的进展:例如提出了多层直方图结合亮度保持的均衡算法、动态分层直方图均衡算法。这些算法通过分割图像,然后在子层图像内做均衡处理,较好地解决了直方图均衡过程中的对比度过拉伸问题,并且可以控制子层灰度映射范围,增强效果较好。四 : 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
图像增强 图像增强
61阅读提醒您本文地址:
本文标题:图像增强-图像的对比度增强61阅读| 精彩专题| 最新文章| 热门文章| 苏ICP备13036349号-1