一 : 网申(apply on line)全攻略
1 何为网申?二 : philips on-line test笔经
(1)首先,最好能在网络条件、计算机条件较好较稳定,且环境比较安静(不要分散注意力)的地方准备进行测试。因为测试是限时的,而且时间比较紧,一旦进入测试环节,倒计时就开始了,要全力以赴答题才可能完成。(注:网速不影响时间,shl将测试传到本地机,做完后上传,所以计算机不死机,网络不断网就行了)
(2)登录shl后,先简要填写个人信息,比如国籍等(英文,也有法语、德语或其他语种可选,无中文可选);
(3)个人信息完成后,进入测试部分,此时可再次选择测试题目的语言,建议选择简体中文,因为即使中文读起来都有些生疏的文字,用英文作答可能比较难懂或是时间不允许(若英文有近似母语的程度可以试一试英文)
(4)我的on-line测试分为两个部分:
逻辑推理判断:即根据给出的一段话,对题目中的结论进行 "对" or “错" or “无法判断" 的选择;15分钟15道题;进入这一单元后,可以先做不计时的练习题,可重复多次做练习,但都是同一套题,每次做完会给出结果,哪道错哪道题对会显示,建议通过这一套题调整自己做题时间的安排,尽量将思维调整到shl测试正确的思路上。最后进入正式测试,注意时间,冷静解答;
数字计算:即给出一些图或表格,当中给出一些数据,如gdp,人口数;股票价格、债务、净利润;etc.根据这些数据,计算相关的一些数值。这一部分也会先安排不计时的练习,也可重复多次做练习,但也是同一套题,也会给出答案,建议同上;
三 : on-line
Agenericschemeforthedesignofe?cient
on-linealgorithmsforlattices
PetkoValtchev1,MohamedRouaneHacene1,andRokiaMissaoui2DIRO,Universit′edeMontr′eal,C.P.6128,Succ.“Centre-Ville”,
Montr′eal,Qu′ebec,Canada,H3C3J7
D′epartementd’informatiqueetd’ing′enierie,UQO,C.P.1250,succursaleB
Gatineau,Qu′ebec,Canada,J8X3X712
Abstract.Amajorissuewithlargedynamicdatasetsistheprocess-ingofsmallchangesintheinputthroughcorrespondinglysmallre-arrangementsoftheoutput.Thiswasthemotivationbehindthede-signofincrementaloron-linealgorithmsforlatticemaintenance,whoseworkamountstoagradualconstructionofthe?nallatticebyrepeat-edlyaddingrows/columnstothedatatable.Asanattempttoputtheincrementaltrendonstrongtheoreticalgrounds,wepresentagenericalgorithmicschemethatisbasedonadetailedanalysisofthelatticetransformationtriggeredbyarow/columnadditionandoftheunderly-ingsub-structure.Foreachtaskfromtheschemewesuggestane?cientimplementationstrategyandputalowerboundonitsworst-casecom-plexity.Moreover,aninstanciationoftheincrementalschemeispresentedwhichisascomplexasthebestbatchalgorithm.
1Introduction
Formalconceptanalysis(FCA)[5]studiesthelatticestructuresbuiltontopofbinaryrelations(calledconceptlatticesorGaloislatticesasin[1]).Asamatteroffact,theunderlyingalgorithmictechniquesareincreasinglyusedintheresolutionofpracticalproblemsfromsoftwareengineering[6],datamining[7]andinformationretrieval[3].
Ourstudyinvestigatesthenewalgorithmicproblemsrelatedtotheanalysisofvolatiledatasets.Asaparticularcase,on-lineorincrementallatticealgorithms,asdescribedin[8,3],basicallymaintainlatticestructuresupontheinsertionofanewrow/columnintothebinarytable.Thus,givenabinaryrelationKanditscorrespondinglatticeL,andanewrow/columno,thelatticeL+correspondingtotheaugmentedrelationK+=K∪{o}iscomputed.Mostoftheexistingon-linealgorithmshavebeendesignedwithpracticalconcernsinmind,e.g.,e?cienthandlingoflargebutsparsebinarytables[8]andthereforeproveine?cientwheneverdatasetsgetdenser[9].
Here,weexplorethesuborderofL+madeupofallnewnodeswithrespecttoLanduseanisomorphicsuborderofL(thegeneratorsofthenewnodes)thatworksasaguidelineforthecompletionofLtoL+.Structuralpropertiesofthelattersuborderunderlythedesignofagenericcompletionscheme,i.e.,asequence
阿衰on line on-line
ofstepsthatcanbeseparatelyexaminedfore?cientimplementations.Asa?rsto?springofthescheme,wedescribeanovelon-linealgorithmthatreliesbothoninsightsonthegeneratorsuborderandonsomecardinality-basedreasoningwhilebringingdowntheoverallcostoflatticeconstructionbysubsequentcompletionstothecurrentlowerboundforbatchconstruction.
ThepaperstartsbyrecallingsomebasicFCAresults(Section2)andfunda-mentalsoflatticeconstruction(Section3).Thestructureofthegenerator/newsubordersintheinitial/targetlattice,respectively,isthenexamined(Section4).Next,agenericschemeforlatticecompletionissketchedandforeachtaskoftheschemeimplementation,directionsarediscussed(Section5).Finally,thepaperpresentsane?ectivealgorithmforlatticemaintenanceandclari?esitsworst-casecomplexity(Section6).
2Formalconceptanalysisbackground
FCA[5]studiesthepartiallyorderedstructure,knownunderthenamesofGaloislattice[1]orconceptlattice,whichisinducedbyabinaryrelationoverapairofsetsO(objects)andA(attributes).
De?nition1.AformalcontextisatripleK=(O,A,I)whereOandAaresetsandIisabinary(incidence)relation,i.e.,I?O×A.
Withinacontext(seeFigure1ontheleft),objectsaredenotedbynumbersandattributebysmallletters.Twofunctions,fandg,summarizethecontext-relatedlinksbetweenobjectsandattributes.
De?nition2.Thefunctionfmapsasetofobjectsintothesetofcommonattributes,whereasg3isthedualforattributesets:
–f:P(O)→P(A),f(X)=X??={a∈A|?o∈X,oIa}
–g:P(A)→P(O),g(Y)=Y??={o∈O|?a∈Y,oIa}
Forexample,f(14)=fgh4.Furthermore,thecompoundoperatorsg?f(X)andf?g(Y)areclosureoperatorsoverP(O)andP(A)respectively.Thus,eachoftheminducesafamilyofclosedsubsets,calledCoandCarespectively,withfandgasbijectivemappingsbetweenbothfamilies.Acouple(X,Y),ofmutuallycorrespondingclosedsubsetsiscalleda(formal)concept.
De?nition3.Aformalconceptisacouple(X,Y)whereX∈P(O),Y∈P(A),X=Y??andY=X??.XiscalledtheextentandYtheintentoftheconcept.
Thus,(178,bcd)isaconcept,but(16,efh)isnot.Moreover,thesetCKofallconceptsofthecontextK=(O,A,I)ispartiallyorderedbyintent/extentinclusion:(X1,Y1)≤K(X2,Y2)?X1?X2(Y2?Y1).
阿衰on line on-line
1X3
X
5
XXXX7
X9X
阿衰on line on-line
AnearlyFCAalgorithmhasbeensuggestedbyGanter[4]basedonaparticularorderamongconceptsthathelpsavoidcomputingagivenconceptmorethanonce.
However,ofgreaterinteresttousarealgorithmsthatnotonlydiscoverC,butalsoinferthelatticeorder≤,i.e.,constructtheentirelatticeL.Thismorecomplexproblemmaybeformalizedasfollows:
ProblemCompute-Lattice
Given:acontextK=(O,A,I),
Find:thelatticeL=??C,≤??correspondingtoK.
BatchalgorithmsfortheCompute-Latticeproblemhavebeenproposed?rstbyBordat[2]andlateronbyNourineandRaynaud[10].TheformeralgorithmreliesonstructuralpropertiesoftheprecedencerelationinLtogeneratetheconceptsinanappropriateorder.Thus,fromeachconceptthealgorithmgener-atesitsuppercoverswhichmeansthataconceptwillbegeneratedanumberoftimesthatcorrespondstothenumberofitslowercovers.Recently,NourineandRaynaudsuggestedane?cientprocedureforconstructingafamilyofopensetsandshowedhowitmaybeusedtoconstructthelattice(seeSection5.4).
61阅读提醒您本文地址:
Thereisaknowndi?cultyinestimatingthecomplexityoflatticeconstruc-tionalgorithmsuniquelywithrespecttothesizeoftheinputdata.Actually,thereisnoknownbound(otherthanthetrivialone,i.e.,thenumberofallsub-setsofOorA)ofthenumberofconceptsdependingonthedimensionsofthebinaryrelation,i.e.,thesizeoftheobjectset,oftheattributeset,orofthebinaryrelation.Evenworse,ithasbeenrecentlyproventhattheproblemofestimatingthesizeofLfromKis#P-complete.Fortheabovereasons,itisadmittedtoincludethesizeoftheresult,i.e.,thenumberoftheconcepts,inthecomplexityestimation.Thus,with|L|asafactor,theworst-casecomplexityexpressionoftheclassicalalgorithmssolvingCompute-ConceptisO((k+m)lkm),wherel=|L|,k=|O|,andm=|A|.ThealgorithmofBordatcanbeassessedtobeofcomplexityO((k+m)l|I|)wherethesizeofthebinaryrelation(i.e.,thenumberofpositiveentriesinK)istakenintoaccount.Finally,theworkofNourineandRaynaudhashelpedreducethecomplexityorderoftheproblemtoO((k+m)lk).
3.2Incrementalapproaches
On-lineorincrementalalgorithmsdonotactuallyconstructthelattice,butrathermaintainitsintegrityupontheinsertionofanewobject/attributeintothecontext:
ProblemCompute-Lattice-Inc
Given:acontextK=(O,A,I)withitslatticeLandanobjecto,
Find:thelatticeL+correspondingtoK+=(O∪{o},A,I∪{o}×o??).
阿衰on line on-line
Obviously,theproblemCompute-LatticemaybepolynomiallyreducedtoCompute-Lattice-IncbyiteratingCompute-Lattice-IncontheentiresetO(A).Inotherwords,an(extended)incrementalmethodcanconstructthelat-ticeLstartingfromasingleobjecto1andgraduallyincorporatinganynewobjectoi(onitsarrival)intothelatticeLi?1(overacontextK=({o1,...,oi?1},A,I)),eachtimecarryingoutasetofstructuralupdates.
Godinetal.[8]suggestedanincrementalprocedurewhichlocallymodi?esthelatticestructure(insertionofnewconcepts,completionofexistingones,dele-tionofredundantlinks,etc.)whilekeepinglargepartsofthelatticeuntouched.ThebasicapproachfollowsafundamentalpropertyoftheGaloisconnectiones-tablishedbyfandgon(P(O),P(A)):bothfamiliesCoandCaareclosedunderintersection[1].Thus,thewholeinsertionprocessisaimedattheintegrationintoLi?1ofallconceptswhoseintentscorrespondtointersectionsof{oi}??withaaintentsfromCi?1,whicharenotthemselvesinCi?1.Theseadditionalconcepts(furthercallednewconceptsinN+(o)),areinsertedintothelatticeatapar-ticularplace,i.e.,eachnewconceptisprecededbyaspeci?ccounterpartfromtheinitiallattice,calleditsgenerator(thesetofgeneratorsisdenotedG(o)).TwoothercategoriesofconceptsinL=Li?1aredistinguished:modi?ed(M(o))aconceptscorrespondtointersectionsof{oi}??withmembersofCi?1thatalreadyaexistinCi?1,whiletheremainingsetofconceptsintheinitiallatticearecalledoldorunchanged.Inthe?nallatticeL+=Li,theoldconceptspreservealltheircharacteristics,i.e.,intent,extentaswellasupperandlowercovers.Generatorsdonotexperiencechangesintheirinformationcontent,i.e.,intentandextent,butanewconceptisaddedtotheiruppercovers.Inamodi?edconcept,theextentisaugmentedbythenewobjectowhileinthesetofitslowercovers,anygeneratorisreplacedbythecorrespondingnewconcept.Inthenextsections,weshallsticktothisintuitiveterminology,butweshallputitonaformalgroundwhiledistinguishingthesetsofconceptsintheinitiallattice(M(o)andG(o))fromtheircounterpartsinthe?nalone(M(o)+andG(o)+,respectively).
Example1(Insertionofobject9).AssumeListhelatticeinducedbytheob-jectset12345678(seeFigure1ontheright)andconsider9asthenewob-ject.Thesetofunchangedconceptshastwoelements,{c#6,c#10},whereasthesetofmodi?edandgeneratorsareM(o)={c#1,c#2,c#3,c#4,c#5,c#8}andG(o)={c#7,c#9,c#11,c#12,c#13}respectively.Theresultofthewholeoper-ationisthelatticeLinFigure2.Thus,thesetofthenewconceptintentsis:{cd,fh,cdgh,dfgh,cdfgh}.
AnotherincrementalalgorithmforlatticeconstructionhasbeensuggestedbyCarpinetoandRomano[3].
Inarecentpaper[11],wegeneralizedtheincrementalapproachofGodinetal..Forthispurpose,weappliedsomestructuralresultsfromthelatticeas-semblyframeworkde?nedin[14].Inparticular,weshowedthattheincrementalproblemCompute-Lattice-IncisaspecialcaseofthemoregenerallatticeassemblyproblemAssembly-Lattice.Morerecently,wehavepresentedathe-oreticalframeworkthatclari?estherestructuringinvolvedintheresolutionof
阿衰on line on-line
efhFig.2.TheHassediagramoftheconcept(Galois)latticederivedfromKwithO={1,2,3,...,9}.
Compute-Lattice-Inc[13]andfurtherenablesthedesignofproceduresthatexploreonlyapartofthelatticeL(seeSection6).
Inthenextsection,werecallthebasicresultsfromourframework.
4Theoreticalfoundations
Forspacelimitationreasons,onlykeyde?nitionsandresultsthathelptheun-derstandingofthemoretopicaldevelopmentsareprovidedinthissection.
First,asetofmappingsisgivenlinkingthelatticesLandL+5.ThemappingσsendsaconceptfromLtotheconceptinL+withthesameintentwhereasγworksotherwayround,butrespectsextentpreservation(moduloo).Themappingsχandχ+sendaconceptinLtothemaximalelementofitsclass[]QinLandL+,respectively.
61阅读提醒您本文地址:
De?nition1Assumethefollowingmappings:
–
–
–
–??γ:C+→Cwithγ(X,Y)=(X1,X1),whereX1=X?{o},σ:C→C+withσ(X,Y)=(Y??,Y)whereY??iscomputedinK+,χ:C→Cwithχ(X,Y)=(Y1??,Y1????),whereY1=Y∩{o}??,
χ+:C→C+withχ+(X,Y)=(Y1??,Y1),whereY1=Y∩{o}??(??overK+).TheabovemappingsaredepictedinFigure3.Observethatσisajoin-preservingorderembedding,whereasγisameet-preservingfunctionwithγ?σ=idC.Moreover,bothmappingsunderlythenecessaryde?nitions(skippedhere)forthesetsG(o)andM(o)inLandtheircounterpartsG+(o)andM+(o)inL+toreplacetheintuitivedescriptionsweusedsofar.
阿衰on line on-line
Fig.3.ThelatticesL,L+and2Arelatedbythemappingsχ,χ+,σ,γandQ.A?rstkeyresultstatesthatG(o)andM(o)areexactlythemaximalconceptsintheequivalenceclassesinducedbythefunctionQ:C→2Ade?nedasQ(c)=Y∩{o}??wherec=(X,Y).Moreover,thesuborderofLmadeupofG(o)andM(o)isisomorphic,viaχ+,to↑ν(o),i.e.,theprime?lterofL+generatedbytheminimalconceptincludingo.Consequently,(G(o)∪M(o),≤)isameet-semi-lattice.
Finally,theprecedenceorderinL+evolvesfromtheprecedenceinLasfollows.Givenanewconceptc,itsgeneratorσ(c)isalowercoverofcwhilethepossibleotherlowercoversofc(Covl(c))layinN+(o).TheuppercoversofcaretheconceptsfromM+(o)∪N+(o),thatcorrespond,viaσ,totheuppercoversofthegeneratorσ(c)inthesemi-lattice(G(o)∪M(o),≤).Thelattersetmaybeextractedfromthesetofactualuppercoversofσ(c)inL,Covl(σ(c)),byconsideringthemaximaoftheirrespectiveclassesforQ,i.e.,thevaluesofχonCovl(sigma(c)),andkeepingonlytheminimalvaluesofthosevalues.Withamodi?edconceptcinM+(o),itslowercoversinL+di?erfromthelowercoversofγ(c)inLby(i)the(possible)inclusionofconceptsfromN+(o),and(ii)theremovalofallmembersofG+(o).Thesefactsaresummarizedasfollows:Property1Therelation?+isobtainedfrom?asfollows:
?+={(σ(γ(c)),c)|c∈N+(o)}
∪{(c,cˉ)|c∈N+(o),cˉ∈Min({χ(?c)|γ(c)?c?})}
∪{(c1,c2)|(γ(c1),γ(c2))∈(??G(o)×M(o))}
5AgenericschemeforincrementallatticeconstructionThestructuralresultsfromthepreviousparagraphsunderlieagenericprocedurethat,givenanobjecto,transformsLintoL+.
5.1Principlesofthemethod
AgenericproceduresolvingCompute-Lattice-Incmaybesketchedoutofthefollowingmaintasks:(i)partitionoftheconceptsinLintoclasses(bycomput-
阿衰on line on-line
ingintentintersections),(ii)detectionofmaximaforeveryclass[]Qandtestofitsstatus,i.e.,modi?edorgenerator,(iii)updateofmodi?edconcepts,(iv)creationofnewelementsandcomputationoftheirintentandextent,(v)com-putationofloweranduppercoversforeachnewelement,and(vi)eliminationofobsoletelinksforeachgenerator.Thesetasks,whenexecutedintheprevi-ouslyindicatedorder,completeadatastructurerepresentingthelatticeLintoastructurerepresentingL+asshowninAlgorithm1hereafter.
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:procedureCompute-Lattice-Inc(In/Out:L=??C,≤??alattice;In:oanobject)forallcinCdoPutcinitsclassinL/Qw.r.t.Q(c)forall[]QinL/QdoFindc=max([]Q)ifIntent(c)?o??thenPutcinM(o)elsePutcinG(o)forallcinM(o)doExtent(c)←Extent(c)∪{o}forallcinG(o)doc?←New-Concept(Extent(c)∪{o}??,Q(c))Putc?inN(o)forallc?inN(o)doConnectc?asanuppercoverofitsgeneratorcCompute-Upper-Covers(c?,c)forallcinG(o)doforallcˉinCovu(c)∩M(o)doDisconnectcandcˉ
Algorithm1:Genericschemefortheinsertionofanewobjectintoaconcept(Galois)lattice.
Theaboveprocedureisanalgorithmicschemethatgeneralizestheexistingincrementalalgorithmsinthesenseofspecifyingthefullscopeoftheworktobedoneandtheorderofthetaskstobecarriedout.However,theexactwayaparticularalgorithmmightinstantiatetheschemedeservesafurtherclari?-cation.Ononehand,someofthetasksmightremainimplicitinaparticularmethod.Thus,thetask(i)isnotexplicitlydescribedinmostofthemethodsfromtheliterature,exceptinsomerecentworkonlattice-basedassociationrulemining[13,12].However,allincrementalmethodsdocomputethevaluesofthefunctionQforeveryconceptinL,asapreliminarystepinthedetectionofclassmaxima.Ontheotherhand,thereisalargespaceforcombiningsubtasksintolargersteps,asmajorexistingalgorithmsactuallydo.Forexample,thealgo-rithmsin[8,3]performallthesub-taskssimultaneously,whereasAlgorithm7in[13]separatestheproblemintotwostages:tasks(i?iii)are?rstcarriedout,
阿衰on line on-line
followedbytasks(iv?vi).Inthenextparagraphs,wediscussvariousrealizationsoftheabovesubtasks.
5.2PartitioningofCintoclasses[]Q
Allincrementalalgorithmsexplorethelattice,mostofthetimeinatop-downbreadth-?rsttraversalofthelatticegraph.Classesareusuallynotdirectlyma-nipulated.Instead,ateachlatticenode,thestatusofthecorrespondingconceptwithinitsclassisconsidered.Classesareexplicitlyconsideredinthemethodsdescribedin[13,12],which,althoughdesignedforasimplerproblem,i.e.,up-dateof(Ca,?)andCa,respectively,canbeeasilyextendedto?rst-classmethodsforCompute-Lattice-Inc.Bothmethodsapplyadvancedtechniquesinordertoavoidthetraversaloftheentirelatticewhenlookingforclassmaxima.Themethodin[13]skipstheentireclassinducedbytheemptyintersection,i.e.,Q?1(?).Exceptforsmallandverydensecontextswhereitcanevenbevoid,Q?1(?)isbyfarthelargestclass,andskippingitshouldresultinsubstantialperformancegains.Analternativestrategyconsiststoexploreclassconvexity(seeProperty2below)inordertoonlypartiallyexamineeachclass[12].Forthispurpose,abottom-up(partial)traversalofthelatticeisimplemented:when-everanon-maximalmemberofaclassisexamined,themethod“jumps”straighttothemaximumofthatclass.
61阅读提醒您本文地址:
5.3Detectionofclassmaxima
Top-downbreadth-?rsttraversalofthelatticeeasesthedirectcomputationofeachclassmaxima,i.e.,withoutconstructingtheclassexplicitly.ThewholetraversalmaybesummarizedasagradualcomputationofthefunctionsQ.Thus,itisenoughtodetecteachconceptcthatproducesaparticularintersectionInt=Intent(c)∩o??,forthe?rsttime.Forthistask,themethodofGodinetal.reliesonaglobalmemoryforintersectionsthathavealreadybeenmet.Thisapproachcouldbee?cientlyimplementedwithatriestructurewhichhelpsspeed-upthelookupsforaparticularintersection(seeAlgorithms3and4in[13]).However,wesuggesthereanothertechnique,basedexclusivelyonlocallyavailableinformationaboutalatticenode.Thetechniquetakesadvantageoftheconvexityoftheclasses[]Q:
Property2Allclasses[]QinL,areconvexsets:
?c,cˉ,c≤c≤cˉand[ˉc]Q=[c
阿衰on line on-line
5.4Computationoftheuppercoversofanewconcept
Givenageneratorc,“connecting”thenewconceptc?=χ+(c)inthelatticerequirestheupperandlowercoversofc?.Atop-downbreadth-?rsttraversalofLallowsthefocustobelimitedonuppercoverswhiletheworkonlowercov-ersisdoneforfree.Moreover,atthetimec?iscreated,allitsuppercoversin+Larealreadyprocessedsotheyareavailableforlookupandlinkcreation.In[8],astraightforwardtechniqueforuppercovercomputationispresentedwhichamountstolookingforallsuccessorsofcthatarenotprecededbyan-othersuccessor.Amoresophisticatedtechniqueasin[10]usesapropertyofthesetdi?erencebetweenextentsoftwoconcepts(sometimescalledthefacebetweentheconceptsintheliterature).Thepropertystatesthataconceptcprecedesanotherconceptcˉinthelattice,i?foranyobjectoˉinthesetdi?er-enceExtent(ˉc)?Extent(c),theclosureoftheset{oˉ}∪Extent(c)isExtent(ˉc):
ˉYˉ)∈L,c?cˉ?X={oProperty3Foranyc=(X,Y),cˉ=(X,ˉi?Xˉ∈
????ˉ}.O|({oˉ}∪X)=X
Thisiseasilycheckedthroughintersectionsofconceptintentsandasubsequentcomparisonofsetcardinalities.Todetectalluppercoversofaconceptc=(X,Y),oneneedstochecktheclosuresof{oˉ}∪Xforeveryoˉ∈O?Xandselectsuccessorsofcthatsatisfytheaboveproperty.Thisleadstoacomplexityofk(k+m)perconcept,wherekcomesfromthefactorO?Xandmisthecostofset-theoreticoperationsonintents.
Tofurthercutthecomplexityofthetask,wesuggestamethodthatshouldatleastimprovethepracticalperformances.Itcanbesummarizedasfollows(see[14]fordetails).First,insteadofconsideringallthepotentialsuccessorsofanewconceptc,weselectasubsetofthem,Candidates={χ+(ˉc)|cˉ∈u+Cov(γ(c))},i.e.,theimagesbyχofalluppercoversofthegeneratorγ(c).Candidatesisa(notnecessarilystrict)subsetof↑c?{c},wherebythecon-vexityoftheclasses[]QandthemonotonicityofQ,insuretheinclusionofalluppercoversofCovu(c)=min(↑c?{c})intheformerset.SincetheconceptsinCovu(c)coincidewiththeminimaofCandidates,theformersetcanbecom-putedthroughadirectapplicationofabasicpropertyofformalconceptsstatingthatextentfacesbetweencandthemembersofCovu(c)arepairwisedisjoint.
ˉ1,Yˉ1),cˉ2,Yˉ2)∈Property4Foranyc=(X,Y)∈L,andcˉ1=(Xˉ2=(Xˉ1∩Xˉ2=X.Covu(c),X
?1,Y?1)fromCandidates?Covu(c)thereisanuppercovercForanyc?=(Xˉ=ˉYˉ)suchthatc?∩Xˉ=Xˉ?X,whereXistheextentof(X,ˉ≤c?whenceX
c.TheelementsofCandidates?Covu(c)canthereforebe?lteredbyasetofinclusiontestsonCandidates.Todothise?cientlyandavoidtestingofallpossiblecouples,abu?erofattributescanbeusedtocumulateallthefacesofvaliduppercoversofcthataremetsofar.Providedthatcandidatesarelistedinanordercompatiblewith≤(sothatsmallercandidatesaremetbeforelargerones),asimpleintersectionwiththebu?erisenoughtotestwhetheracandidateisunuppercoverornot.Thisabove?lteringstrategyeliminatesnon-minimal
阿衰on line on-line
candidateswhilealsodiscardingcopiesofthesameconcept(asseveraluppercoversofcmaybelongtothesameclass).Finally,thecomputationofχ+whichisessentialfortheupwarddetectionofclassmaximaisstraightforward:whilemodi?edconceptsinLtaketheirownσvaluesforχ+(sameintent),generatorstaketherespectivenewconcept,andunchangedconceptssimply“inherit”theappropriatevaluefromanuppercoverthatbelongstothesameclass[]Q.
Toassessthecostoftheoperation,onemayobservethat|Covu(γ(c))|oper-ationsareneeded,whichisatmostd(L),i.e.,the(outer)degreeofthelatticetakenasanorientedgraph.Moreover,theoperationsofextentintersectionandunion,withorderedsetsofobjectsinconceptextentstakeslineartimeinthesizeofthearguments,i.e.,nomorethank=|O|.Onlya?xednumberofsuchoperationsareexecutedpermemberofCandidates,sothetotalcostisintheorderofO(kd(L)).AlthoughthecomplexityorderremainscomparabletoO(k2),thefactord(L)willbemostofthetimestrictlysmallerthank,and,insparsedatasets,thedi?erencecouldbesigni?cant.
5.5Obsoletelinkelimination
Anymodi?edc?whichisanimmediatesuccessorofageneratorcˉinLshould++bedisconnectedfromcˉinLsinceχ(?c)isnecessarilyanuppercoverofthe+correspondingnewelementc=χ(ˉc):
Property5Foranycˉ∈G(o),c?∈M(o):cˉ?c??c?∈min({χ+(?c)|c?∈uCov(ˉc)}).
AsthesetCovu(ˉc)isrequiredinthecomputationofCovu(c),thereisnoaddi-tionalcostineliminatingc?fromthelistoftheuppercoversofcˉ.ThisisdoneduringthecomputationofCandidates.Conversely,deletingcˉfromthelistofthelowercoversofc?(ifsuchlistisused),isdonefreeofextrae?ort,i.e.,byreplacingcˉwithc=χ+(ˉc).
61阅读提醒您本文地址:
6Ane?cientinstantiationofthescheme
Thealgorithmtakesalatticeandanewobject6andoutputstheupdatedlatticeusingthesamedatastructureLtorepresentboththeinitialandtheresultinglattices.ThevaluesofQandχ+aresupposedtobestoredinagenericstructureallowingindexingonconceptidenti?ers(structureChiPlus).
First,theconceptsetissortedtoalinearextensionoftheorder≤requiredforthetop-downtraversalofL(primitiveSortonline3).Theoverallloop(lines4to20)examineseveryconceptcinLandestablishesitsstatusin[c]Qbycomparing|Q(c)|tothemaximal|Q(ˉc)|wherecˉisanuppercoverofc(line
6).Tothisend,thevariablenew-maxisused.Initializedwiththeuppercovermaximizing|Q|(line5),new-maxeventuallypointstotheconceptinL+whoseintentequalsQ(c),i.e.,χ+(c).Classmaximaarefurtherdividedintomodi?ed
阿衰on line on-line
andgenerators(line7).Amodi?edconceptc(lines8to10)hasitsextentupdated.Then,suchacissetasitsownvalueforχ+,χ+(c)=c(vianew-max).Generators,?rst,giverisetoanewconcept(line12).Then,thevaluesofχ+fortheiruppercoversarepickedup(intheCandidateslist,line13)tobefurther?lteredforminimalconcepts(Min-Closed,line14).Minimaareconnectedtothenewconceptandthoseofthemwhicharemodi?edinLaredisconnectedfromthegeneratorc(lines15to17).Finally,thecorrectmaximumoftheclass[c]QinL+,i.e.,χ+(c)isset(line18)andthenewconceptisaddedtothelattice(line19).Attheendoftheloop,thevalueofχ+isstoredforfurtheruse.
1:procedureAdd-Object(In/Out:L=??C,≤??alattice;In:oanobject)2:
3:Sort(C)
4:forallcinCdo5:new-max←argmax({|Q(ˉc)||cˉ∈Covu(c)})6:if|Q(c)|=|Q(new-max)|then7:if|Q(c)|=|Intent(c)|then8:Extent(c)←Extent(c)∪{o}{cismodified}9:M(o)←M(o)∪{c}10:new-max←c11:else12:c?←New-Concept(Extent(c)∪{o}??,Q(c)){cisgenerator}
u
13:Candidates←{ChiPlus(ˉc)|cˉ∈Cov(c)}14:forallcˉinMin-Closed(Candidates)do15:New-Link(c?,cˉ)16:ifcˉ∈M(o)then17:Drop-Link(c,cˉ)18:new-max←c?19:L←L∪{c?}20:ChiPlus(c)←new-max
Algorithm2:InsertionofanewobjectintoaGaloislattice.
Example2.ConsiderthesamesituationasinExample1.Thetraceofthealgo-rithmisgiveninthefollowingtablewhichprovidestheintentintersectionandtheχ+imageforeachconcept.ConceptsinL+areunderlinedtoavoidconfusionwiththeircounterpartsinL).
c?gcdcdcdfgh
χ+(c)
#1#4#14#14#18
Q(c)chdghcdgh
Cat.
#2#5#8#16
cdcfhdfgh
χ+(c)
#3#2#15#17
Toillustratethewayouralgorithmproceeds,considertheprocessingofconceptc#12=(3,defgh).ThevalueofQ(c#12)isdfghwhereasCandidatescontains
阿衰on line on-line
theimagesbyχ+oftheuppercoversofc#12,i.e.,c#8andc#9:Candidates={c#15=(359,fh)}.Obviously,neitheroftheintentsisasbigasQ(c#12),soc#12isamaximum,morepreciselyagenerator.Thenewconcept,c
#8isinM(o),itslinktoc#12isremoved.
6.1Complexityissues
Let?(l)=|C+|?|C|andletussplitthecostofasingleobjectadditionintotwofactors:thecostofthetraversalofL(lines3?7and20ofAlgorithm2)andthecostoftherestructuringofL,i.e.,theprocessingofclassmaxima(lines8?19).First,assortingconceptstoalinearextensionof≤onlyrequirescomparisonofintentsizes,whichareboundbym,itcanbedoneinO(l).Moreover,thepropertraversaltakesO(l)conceptexaminationswhichareallinO(k+m).Thus,the?rstfactorisinO(l(k+m)).Thesecondfactorisfurthersplitintomodi?edandgeneratorcostswherebythe?rstcostislinearinthesizeofM(o)(sincelines8?10maybeexecutedinconstanttimeevenwithsortedextents)andthereforecouldbeignored.Thegenerator-relatedcosthasafactor?(l)whereastheremainingfactoristhecostofcreatingandproperlyconnectingasinglenewconcept.Thedominantcomponentofthelatteristhecostofthelatticeorderupdate(lines14?17)whichisinO(k2)aswementionedearlier.Consequently,theglobalrestructuringoverheadisinO(?(l)k2).ThisleadstoaworstcasecomplexityofO(?(l)k2+l(k+m))forasingleinsertion,whichisalowerboundforthecomplexityofCompute-Lattice-Inc(seealso[11]).
Theassessmentoftheentirelatticeconstructionviaincrementalupdatesisdelicatesinceitrequiressummingonallkinsertionswhereasthecostofsteps1tok?1dependsonparametersoftheintermediatestructures.Onceagain,wesumontheabovehigh-levelcomplexityfactorsseparately.Thus,thetotalcostoftheklatticetraversalsisboundbyktimesthecostofthemostexpensivetraversal(thelastone),i.e.,itisinO(kl(k+m)).Thetotalcostoflatticerestructuringisinturnboundbythenumberofallnewconcepts(thesumof?(li))timesthemaximalcostofanewconceptprocessing.The?rstfactorisexactlyl=|C+|sinceeachconceptinthe?nallatticeiscreatedexactlyoncewhichmeanstherestructuringfactoroftheconstructionisinO(l(k+m)k),thusleadingtoaglobalcomplexityinthesameclassO(l(k+m)k).Theabove?guresindicatethatthecomplexityofCompute-Lattice,wheneverreducedtoaseriesofCompute-Lattice-Inc,remainsinthesameclassasthebestknownlowerboundforbatchmethods[10].
7Conclusion
Thepresentstudyismotivatedbytheneedforbothe?cientandtheoretically-groundedalgorithmsforincrementallatticeconstruction.Inthispaper,wecom-pleteourowncharacterizationofthesubstructurethatshouldbeintegratedintotheinitiallatticeuponeachinsertionofanobject/attributeintothecontext.
61阅读提醒您本文地址:
阿衰on line on-line
Moreover,weshowhowtherelevantstructuralpropertiessupportthedesignofane?ectivemaintenancemethodswhich,unlikepreviousalgorithms,avoidredundantcomputations.Asguidelinesforsuchdesign,weprovideagenericalgorithmicschemethatstatesthelimitsoftheminimalworkthatneedstobedoneintherestructuring.Aconcretemethodthatinstantiatestheschemeisproposedwhoseworst-casecomplexityisO(ml+?(l)k2),i.e.,afunctionwhichputsanewandsmallerupperboundforthecostoftheproblemCompute-Lattice-Inc.Surprisinglyenough,whenappliedasabatchmethodforlatticeconstruction,thenewalgorithmshowsthebestknowntheoreticalcomplexity,O((k+m)lk),whichisonlyachievedbyonealgorithm.Asanextstageofourstudy,wearecurrentlyexaminingthepragmaticbene?tsofthescheme,i.e.,thepracticalperformancesofspeci?cschemeinstantiations.
References
[1]M.BarbutandB.Monjardet.OrdreetClassi?cation:Alg`ebreetcombinatoire.Hachette,1970.
[2]J.-P.Bordat.CalculpratiquedutreillisdeGaloisd’unecorrespondance.Math′ematiquesetSciencesHumaines,96:31–47,1986.
[3]C.CarpinetoandG.Romano.ALatticeConceptualClusteringSystemandItsApplicationtoBrowsingRetrieval.MachineLearning,24(2):95–122,1996.
[4]B.Ganter.Twobasicalgorithmsinconceptanalysis.preprint831,TechnischeHochschule,Darmstadt,1984.
[5]B.GanterandR.Wille.FormalConceptAnalysis,MathematicalFoundations.Springer-Verlag,1999.
[6]R.GodinandH.Mili.Buildingandmaintaininganalysis-levelclasshierarchiesusingGaloislattices.InProceedingsofOOPSLA’93,Washington(DC),USA,specialissueofACMSIGPLANNotices,28(10),pages394–410,1993.
[7]R.GodinandR.Missaoui.AnIncrementalConceptFormationApproachforLearningfromDatabases.TheoreticalComputerScience,133:378–419,1994.
[8]R.Godin,R.Missaoui,andH.Alaoui.Incrementalconceptformationalgorithmsbasedongalois(concept)lattices.ComputationalIntelligence,11(2):246–267,1995.
[9]S.KuznetsovandS.Ob’edkov.AlgorithmsfortheConstructionoftheSetofAllConceptandTheirLineDiagram.preprintMATH-AL-05-2000,TechnischeUniversit¨at,Dresden,June2000.
[10]L.NourineandO.Raynaud.AFastAlgorithmforBuildingLattices.Information
ProcessingLetters,71:199–204,1999.
[11]P.ValtchevandR.Missaoui.Buildingconcept(Galois)latticesfromparts:gener-
alizingtheincrementalmethods.InH.DelugachandG.Stumme,editors,Proceed-ings,ICCS-01,volume2120ofLectureNotesinComputerScience,pages290–303,Stanford(CA),USA,2001.Springer-Verlag.
[12]P.ValtchevandR.Missaoui.AFrameworkforIncrementalGenerationofFrequent
ClosedItemsets.DiscreteAppliedMathematics,submitted.
[13]P.Valtchev,R.Missaoui,R.Godin,andM.Meridji.GeneratingFrequentItemsets
Incrementally:TwoNovelApproachesBasedOnGaloisLatticeTheory.JournalofExperimental&TheoreticalArti?cialIntelligence,14(2-3):115–142,2002.
[14]P.Valtchev,R.Missaoui,andP.Lebrun.Apartition-basedapproachtowards
buildingGalois(concept)lattices.DiscreteMathematics,256(3):801–829,2002.
61阅读提醒您本文地址:
本文标题:阿衰on line-网申(apply on line)全攻略61阅读| 精彩专题| 最新文章| 热门文章| 苏ICP备13036349号-1