61阅读

等腰三角形一腰上的中线-证明:等腰三角形的两腰上的中线相等.

发布时间:2017-11-25 所属栏目:等腰三角形一腰上的中线

一 : 证明:等腰三角形的两腰上的中线相等.

证明:等腰三角形的两腰上的中线相等.
题型:解答题难度:中档来源:不详


等腰三角形 证明:等腰三角形的两腰上的中线相等.
已知:等腰△ABC中,AB=AC,AD=DC,AE=EB,
求证:BD=CE.
证明:∵AB=AC,AD=DC,AE=EB,
∴DC=BE,∠DCB=∠EBC.
∵BC=CB,
∴△BDC≌△CEB(SAS).
∴BD=CE.
即等腰三角形的两腰上的中线相等.


考点:

考点名称:等腰三角形的性质,等腰三角形的判定定义:
有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

等腰三角形的性质:
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方
9.等腰三角形中腰大于高
10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

等腰三角形的判定:
1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。

二 : 数学等腰三角形一腰上的中线将三角形的周长分成21和12两个部分,

数学

等腰三角形一腰上的中线将三角形的周长分成21和12两个部分,求此三角形的腰长和底边长。


等腰三角形一腰上的中线将三角形的周长分成21和12两个部分,求此三角形的腰长和底边长。

解 设等腰三角形腰长为a,底为b.则

a+a/2=21;

b+a/2=12.

a+a/2=12;

b+a/2=21.

第一组方程解得:a=14,b=5.

第二组方程解得:a=8,b=17.不存在。

故三角形的腰长14,底边长5.

三 : 求三角形面积最大值一个等腰三角形腰上的中线长根号下3,求这三角形

求三角形面积最大值

一个等腰三角形腰上的中线长根号下3,求这三角形面积的最大值。


受二楼启发

设等腰三角形ABC两腰中线BE、CF交于G,则G为三角形ABC重心,

BG=CG=(2/3)√3

三角形ABC面积=3*三角形GBC面积=3*(1/2)*[(2/3)√3]^2*sinBGC≤2

这三角形面积的最大值2

四 : 如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC

如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,BD=CD=
1
2
AB.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.

等腰三角形三线合一 如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC

请根据从上面材料中所得到的信息解答下列问题:
(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=______;
(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=______.
(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA=______.
(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.
题型:解答题难度:中档来源:不详



等腰三角形三线合一 如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC

(1)∵∠A:∠B:∠C=1:2:3,且∠A+∠B+∠C=180°,
∴∠A=30,∠C=90°,
∴BC=
1
2
AB=
a
2

故填:
a
2


(2)如图2,∵DE是线段BC的垂直平分线,∠ACB=90°,
∴CD=BD,AD=BD.
又∵在△ABC中,∠ACB=90°,∠B=30°,
∴AC=
1
2
AB,
∴△ACD的周长=AC+AB=3BD=15cm.
故填:15cm;

(3)如图3,连接AD.
∵在△ABC中,AB=AC,∠A=120°,D是BC的中点,
∴∠BAD=60°.
又∵DE⊥AB,
∴∠B=∠ADE=30°,
∴BE=
1
2
BD,AE=
1
2
AD,
∴BE:EA=BD:AD=tan60°=
3
:1.
故填:
3
:1.

(4)BP=2PQ.理由如下:
∵△ABC为等边三角形.
∴AB=AC,∠BAC=∠ACB=60°,
在△BAE和△ACD中,
AE=CD
∠BAC=∠ACB
AB=AC

∴△BAE≌△ACD(SAS),
∴∠ABE=∠CAD.
∵∠BPQ为△ABP外角,
∴∠BPQ=∠ABE+∠BAD.
∴∠BPQ=∠CAD+∠BAD=∠BAC=60°
∵BQ⊥AD,
∴∠PBQ=30°,
∴BP=2PQ.


考点:

考点名称:直角三角形的性质及判定直角三角形定义:
有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。

直角三角形性质:
直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
性质5:

如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
(1)(AD)2=BD·DC。
(2)(AB)2=BD·BC。
(3)(AC)2=CD·BC。
性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
性质7:如图,1/AB2+1/AC2=1/AD2
性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
性质9:直角三角形直角上的角平分线与斜边的交点D 则 BD:DC=AB:AC

直角三角形的判定方法:
判定1:定义,有一个角为90°的三角形是直角三角形。
判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)

考点名称:等腰三角形的性质,等腰三角形的判定定义:
有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

等腰三角形的性质:
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方
9.等腰三角形中腰大于高
10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

等腰三角形的判定:
1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。

考点名称:等边三角形等边三角形定义:
三条边都相等的三角形叫做等边三角形,“等边三角形”也被称为“正三角形”。是特殊的等腰三角形。
如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形叫做等边三角形:
1.三边长度相等;
2.三个内角度数均为60度;
3.一个内角为60度的等腰三角形。

性质:
①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。
④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)

判定方法:
①三边相等的三角形是等边三角形(定义)
②三个内角都相等(为60度)的三角形是等边三角形
③有一个角是60度的等腰三角形是等边三角形
④两个内角为60度的三角形是等边三角形
说明:可首先考虑判断三角形是等腰三角形。

等边三角形的性质与判定理解:
首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

等比三角形的尺规做法:
可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。

本文标题:等腰三角形一腰上的中线-证明:等腰三角形的两腰上的中线相等.
本文地址: http://www.61k.com/1080961.html

61阅读| 精彩专题| 最新文章| 热门文章| 苏ICP备13036349号-1