61阅读

VBScript程序员参考手册-OpenCV参考手册

发布时间:2017-08-10 所属栏目:七年级期末考备考手册

一 : OpenCV参考手册

HTTP://WWW.OPENCV.ORG.CNOpenCV参考手册

版本2.1

2010年3月18日

此文档由OpenCV中文论坛会员HEYOUP翻译并整理

opencv中文论坛 OpenCV参考手册

HTTP://WWW.OPENCV.ORG.CN

第一部分

C API参考

此文档由OpenCV中文论坛会员HEYOUP翻译并整理

opencv中文论坛 OpenCV参考手册

HTTP://WWW.OPENCV.ORG.CN

第一章

cxcore核心功能

1.1基本结构

CvPoint

二维点整数坐标(通常以0为基坐标)

typedef struct CvPoint

{

int x;

int y;

}

CvPoint;

x x坐标

y y坐标

/*构造函数*/

inline CvPoint cvPoint(int x,int y);

/*从CvPoint2D32f转换*/

inline CvPoint cvPointFrom32f(CvPoint2D32f point);CvPoint2D32f

二维点浮点坐标

typedef struct CvPoint2D32f

{

float x;

float y;

}

CvPoint2D32f;

x x坐标

y y坐标

/*构造函数*/

此文档由OpenCV中文论坛会员HEYOUP翻译并整理

opencv中文论坛 OpenCV参考手册

HTTP://WWW.OPENCV.ORG.CN

inline CvPoint2D32f cvPoint2D32f(double x,double y);

/*从CvPoint转换*/

inline CvPoint2D32f cvPointTo32f(CvPoint point);

CvPoint3D32f

三维点浮点坐标

typedef struct CvPoint3D32f

{

float x;

float y;

float z;

}

CvPoint3D32f;

x x坐标

y y坐标

z z坐标

/*构造函数*/

inline CvPoint3D32f cvPoint3D32f(double x,double y,double z);CvPoint2D64f

二维点双精度浮点坐标

typedef struct CvPoint2D64f

{

double x;

double y;

}

CvPoint2D64f;

x x坐标

y y坐标

/*构造函数*/

inline CvPoint2D64f cvPoint2D64f(double x,double y);

/*从CvPoint转换*/

inline CvPoint2D64f cvPointTo64f(CvPoint point);

CvPoint3D64f

三维点双精度浮点坐标

typedef struct CvPoint3D64f

此文档由OpenCV中文论坛会员HEYOUP翻译并整理

opencv中文论坛 OpenCV参考手册

HTTP://WWW.OPENCV.ORG.CN

{

double x;

double y;

double z;

}

CvPoint3D64f;

x x坐标

y y坐标

z z坐标

/*构造函数*/

inline CvPoint3D64f cvPoint3D64f(double x,double y,double z);CvSize

像素级的矩形的大小

typedef struct CvSize

{

int width;

int height;

}

CvSize;

width 矩形的宽度

height 矩形的高度

/*构造函数*/

inline CvSize cvSize(int width,int height);

CvSize2D32f

亚像素级的矩形的大小

typedef struct CvSize2D32f

{

float width;

float height;

}

CvSize2D32f;

width 矩形的宽度

height 矩形的高度

/*构造函数*/

inline CvSize2D32f cvSize2D32f(double width,double height);

此文档由OpenCV中文论坛会员HEYOUP翻译并整理

opencv中文论坛 OpenCV参考手册

HTTP://WWW.OPENCV.ORG.CN

CvRect

矩形的大小和位置(通常是左上角)

typedef struct CvRect

{

int x;

int y;

int width;

int height;

}

CvRect;

x 左上角的x坐标

y 左上角的y坐标(对于Windows bitmaps为左下角)

width 矩形的宽度

height 矩形的高度

/*构造函数*/

inline CvRect cvRect(int x,int y,int width,int height);

CvScalar

承载一、二、三、四维双精度浮点数的容器

typedef struct CvScalar

{

double val[4];

}

CvScalar;

/*构造函数:

根据val0初始化val[0],val1初始化val[1]等等

*/

inline CvScalar cvScalar(double val0,double val1=0,double val2=0,double val3=0);/*构造函数:

将val[0]至val[3]初始化为val0123

*/

inline CvScalar cvScalarAll(double val0123);

/*构造函数:

将val[0]初始化为val0,val[1]至val[3]初始化为0

*/

inline CvScalar cvRealScalar(double val10);

此文档由OpenCV中文论坛会员HEYOUP翻译并整理

opencv中文论坛 OpenCV参考手册

HTTP://WWW.OPENCV.ORG.CN

CvTermCriteria

迭代算法终止条件

#define CV_TERMCRIT_ITER

#defineCV_TERMCRIT_NUMBER

#defineCV_TERMCRIT_EPS

typedef struct CvTermCriteria

{

int type;

int max_iter;

double epsilon;

}

CvTermCriteria;

type CV_TERMCRIT_ITER与CV_TERMCRIT_EPS的联合

max_iter 迭代最大次数

epsilon 所需精度

/*构造函数*/

inline CvTermCriteria cvTermCriteria(int type,int max_iter,double epsilon);

/*检查并转换一个CvTermCriteria以至于使type=CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,同时使max_iter和epsilon有效*/

CvTermCriteria cvCheckTermCriteria(CvTermCriteria criteria,double default_eps,int

default_max_iters);1CV_TERMCRIT_ITER2

此文档由OpenCV中文论坛会员HEYOUP翻译并整理

二 : STM32F205xx207xx参考手册

STM32F205xxSTM32F207xx

ARM-based 32-bit MCU, 150DMIPs, up to 1 MB Flash/128+4KB RAM,USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera

Preliminary data

Features

■■

Core: ARM 32-bit Cortex?-M3 CPU with Adaptive real-time accelerator (ART

Accelerator?) allowing 0-wait state execution performance from Flash memory, frequency up to 120MHz, memory protection unit,

150DMIPS/1.25DMIPS/MHz (Dhrystone 2.1)Memories

–Up to 1 Mbyte of Flash memory–Up to 128 + 4 Kbytes of SRAM

–Flexible static memory controller that

supports Compact Flash, SRAM, PSRAM, NOR and NAND memories

–LCD parallel interface, 8080/6800 modesClock, reset and supply management

–1.8 to 3.6 V application supply and I/Os–POR, PDR, PVD and BOR–4 to 26 MHz crystal oscillator

–Internal 16MHz factory-trimmed RC (1% accuracy)

–32kHz oscillator for RTC with calibration–Internal 32kHz RC with calibrationLow power

–Sleep, Stop and Standby modes

–VBAT supply for RTC, 20 × 32 bit backup registers, and optional 4 KB backup SRAM3 × 12-bit, 0.5 μs A/D converters–up to 24 channels

–up to 6 MSPS in triple interleaved mode2 × 12-bit D/A convertersGeneral-purpose DMA

–16-stream DMA controller with centralized FIFOs and burst supportUp to 17 timers

–Up to twelve 16-bit and two 32-bit timers, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder inputDebug mode

–Serial wire debug (SWD) & JTAG interfaces–Cortex-M3 Embedded Trace Macrocell?

1.Package not in production (for development only).■

■■■

Up to 140 I/O ports with interrupt capability:–Up to 136 fast I/Os up to 60MHz–Up to 138 5V-tolerant I/Os

Up to 15 communication interfaces

–Up to 3 × I2C interfaces (SMBus/PMBus)–Up to 4 USARTs and 2 UARTs (7.5 Mbit/s, ISO 7816 interface, LIN, IrDA, modem control)

–Up to 3 SPIs (30 Mbit/s), 2 with muxed I2S to achieve audio class accuracy via audio PLL or external PLL

–2 × CAN interfaces (2.0B Active)–SDIO interface

Advanced connectivity

–USB 2.0 full-speed device/host/OTG controller with on-chip PHY–USB 2.0 high-speed/full-speed

device/host/OTG controller with dedicated DMA, on-chip full-speed PHY and ULPI–10/100 Ethernet MAC with dedicated DMA: supports IEEE 1588v2 hardware, MII/RMII8- to 14-bit parallel camera interface: up to 27Mbyte/s at 27MHz or 48 Mbyte/s at 48 MHzCRC calculation unit, 96-bit unique IDAnalog true random number generator

Device summary

Part number

STM32F205RB, STM32F205RC, STM32F205RE, STM32F205RF, STM32F205RG, STM32F205VB, STM32F205VC, STM32F205VE, STM32F205VF STM32F205VG, STM32F205ZC, STM32F205ZE, STM32F205ZF, STM32F205ZG

STM32F207IC, STM32F207IE, STM32F207IF, STM32F207IG, STM32F207ZC, STM32F207ZE, STM32F207ZF, STM32F207ZG, STM32F207VC, STM32F207VE, STM32F207VF, STM32F207VG

205 STM32F205xx207xx参考手册

Table 1.

Reference

STM32F205xx

STM32F207xx

November 2010Doc ID 15818 Rev 51/147

www.st.com

This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

205 STM32F205xx207xx参考手册

ContentsSTM32F205xx, STM32F207xxContents

1

2Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1

2.2Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 13Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

2.2.6

2.2.7

2.2.8

2.2.9

2.2.10

2.2.11

2.2.12

2.2.13

2.2.14

2.2.15

2.2.16

2.2.17

2.2.18

2.2.19

2.2.20

2.2.21

2.2.22

2.2.23

2.2.24

2.2.25

2.2.26

2.2.27

2.2.28ARM? Cortex?-M3 core with embedded Flash and SRAM . . . . . . . . . 16Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Adaptive real-time memory accelerator (ART Accelerator?) . . . . . . . . 16Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 17True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . 17Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18FSMC (flexible static memory controller) . . . . . . . . . . . . . . . . . . . . . . . . 18Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 19External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 19Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . 23Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Universal synchronous/asynchronous receiver transmitters(UARTs/USARTs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

2/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xx2.2.29

2.2.30

2.2.31

2.2.32

2.2.33

2.2.34

2.2.35

2.2.36

2.2.37

2.2.38

2.2.39

2.2.40

2.2.41

2.2.42ContentsInter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28SDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Ethernet MAC interface with dedicated DMA and IEEE1588 support . 29Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . 29Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . 30Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 31ADCs (analog-to-digital converters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 32Embedded Trace Macrocell? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3

4

5Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.1

5.1.2

5.1.3

5.1.4

5.1.5

5.1.6

5.1.7Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2

5.3Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

5.3.6General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Operating conditions at power-up / power-down (regulator not bypassed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Operating conditions at power-up / power-down in regulatorbypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Embedded reset and power control block characteristics . . . . . . . . . . . 60Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Doc ID 15818 Rev 53/147

205 STM32F205xx207xx参考手册

Contents5.3.7

5.3.8

5.3.9

5.3.10

5.3.11

5.3.12

5.3.13

5.3.14

5.3.15

5.3.16

5.3.17

5.3.18

5.3.19

5.3.20

5.3.21

5.3.22

5.3.23

5.3.24

5.3.25

5.3.26STM32F205xx, STM32F207xxInternal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72PLL spread spectrum clock generation (SSCG) characteristics . . . . . . 73Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 77I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8512-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 104VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 123SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 124RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

6Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1

6.2Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134Appendix AApplication block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.1

A.2

A.3

A.4

A.5Main applications versus package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Application example with regulator off. . . . . . . . . . . . . . . . . . . . . . . . . . . 136USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 137USB OTG high speed (HS) interface solutions. . . . . . . . . . . . . . . . . . . . 138Complete audio player solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1434/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxList of tablesList of tables

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

Table 8.

Table 9.

Table 10.

Table 11.

Table 12.

Table 13.

Table 14.

Table 15.

Table 16.

Table 17.

Table 18.

Table 19.

Table 20.

Table 21.

Table 22.

Table 23.

Table 24.

Table 25.

Table 26.

Table 27.

Table 28.

Table 29.

Table 30.

Table 31.

Table 32.

Table 33.

Table 34.

Table 35.

Table 36.

Table 37.

Table 38.

Table 39.

Table 40.

Table 41.

Table 42.

Table 43.

Table 44.

Table 45.Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1STM32F205xx and STM32F207xx features and peripheral counts . . . . . . . . . . . . . . . . . . 11Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27STM32F20x pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38Alternate function mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Limitations depending on the operating power supply range. . . . . . . . . . . . . . . . . . . . . . . 58Operating conditions at power-up / power-down (regulator not bypassed) . . . . . . . . . . . . 59Operating conditions at power-up / power-down in regulator bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 60Typical and maximum current consumption in Run mode, code with data processingrunning from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Typical and maximum current consumption in Run mode, code with data processing running from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Typical and maximum current consumption in Sleep mode. . . . . . . . . . . . . . . . . . . . . . . . 63Typical and maximum current consumptions in Stop mode. . . . . . . . . . . . . . . . . . . . . . . . 64Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 64Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . 65Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67Low-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73Flash memory characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75Flash memory endurance and data retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76EMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77ESD absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80I/O AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Characteristics of TIMx connected to the APB1 domain . . . . . . . . . . . . . . . . . . . . . . . . . . 83Characteristics of TIMx connected to the APB2 domain . . . . . . . . . . . . . . . . . . . . . . . . . . 84

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

Doc ID 15818 Rev 55/147

205 STM32F205xx207xx参考手册

List of tablesTable 46.

Table 47.

Table 48.

Table 49.

Table 50.

Table 51.

Table 52.

Table 53.

Table 54.

Table 55.

Table 56.

Table 57.

Table 58.

Table 59.

Table 60.

Table 61.

Table 62.

Table 63.

Table 64.

Table 65.

Table 66.

Table 67.

Table 68.

Table 69.

Table 70.

Table 71.

Table 72.

Table 73.

Table 74.

Table 75.

Table 76.

Table 77.

Table 78.

Table 79.

Table 80.

Table 81.

Table 82.

Table 83.

Table 84.

Table 85.

Table 86.

Table 87.STM32F205xx, STM32F207xxI2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85SCL frequency (fPCLK1= 30 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92USB OTG FS electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94Clock timing parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94ULPI timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Ethernet DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . . 96Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . . 96Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . . 97ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102TS characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 106Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 107Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 108Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 109Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113Synchronous non-multiplexed NOR/PSRAM read timings. . . . . . . . . . . . . . . . . . . . . . . . 114Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Switching characteristics for PC Card/CF read and write cycles . . . . . . . . . . . . . . . . . . . 120Switching characteristics for NAND Flash read and write cycles . . . . . . . . . . . . . . . . . . . 123DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123SD / MMC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data. . . . . . . . . 127WLCSP64+2 - 0.400 mm pitch wafer level chip size package mechanical data . . . . . . . 128LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . 129LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 130LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm package mechanical data . 131UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data . 132Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133Ordering information scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134Main applications versus package for STM32F207xx microcontrollers . . . . . . . . . . . . . . 135Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1436/147Doc ID 15818 Rev 5

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxList of figuresList of figures

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.

Figure 22.

Figure 23.

Figure 24.

Figure 25.

Figure 26.

Figure 27.

Figure 28.

Figure 29.

Figure 30.

Figure 31.

Figure 32.

Figure 33.

Figure 34.

Figure 35.

Figure 36.

Figure 37.

Figure 38.

Figure 39.

Figure 40.

Figure 41.

Figure 42.

Figure 43.

Figure 44.

Figure 45.

Figure 46.Compatible board design: LQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Compatible board design: LQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Compatible board design: LQFP64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14STM32F20x block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Multi-AHB matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Startup in regulator bypass/regulator off mode: slow VDD slope - power-down reset risen after VCAP_1/VCAP_2 stabilization. . . . . . . . . . . . . . . . . . . . . . . . 22Startup in regulator bypass/regulator off mode: slow VDD slope - power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 22Sartup in regulator bypass/regulator off and internal reset off . . . . . . . . . . . . . . . . . . . . . . 22STM32F20x LQFP64 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33STM32F20x WLCSP64+2 ballout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33STM32F20x LQFP100 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34STM32F20x LQFP144 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35STM32F20x LQFP176 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36STM32F21xxx UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Pin input voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Number of wait states versus fCPU and VDD range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Typical application with an 8 MHz crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Typical application with a 32.768 kHz crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74PLL output clock waveforms in down spread mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83I2C bus AC waveforms and measurement circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91I2S master timing diagram (Philips protocol)(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . 93ULPI timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96Ethernet RMII timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 101Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 10112-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 105Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 106

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

Doc ID 15818 Rev 57/147

205 STM32F205xx207xx参考手册

List of figuresFigure 47.

Figure 48.

Figure 49.

Figure 50.

Figure 51.

Figure 52.

Figure 53.

Figure 54.

Figure 55.

Figure 56.

Figure 57.

Figure 58.

Figure 59.

Figure 60.

Figure 61.

Figure 62.

Figure 63.

Figure 64.

Figure 65.

Figure 66.

Figure 67.

Figure 68.

Figure 69.

Figure 70.

Figure 71.

Figure 72.

Figure 73.

Figure 74.

Figure 75.

Figure 76.

Figure 77.

Figure 78.

Figure 79.

Figure 80.

Figure 81.

Figure 82.

Figure 83.

Figure 84.

Figure 85.

Figure 86.

Figure 87.STM32F205xx, STM32F207xxAsynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 107Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 109Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112Synchronous non-multiplexed NOR/PSRAM read timings. . . . . . . . . . . . . . . . . . . . . . . . 114Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115PC Card/CompactFlash controller waveforms for common memory read access. . . . . . 116PC Card/CompactFlash controller waveforms for common memory write access. . . . . . 117PC Card/CompactFlash controller waveforms for attribute memory readaccess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118PC Card/CompactFlash controller waveforms for attribute memory writeaccess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 119PC Card/CompactFlash controller waveforms for I/O space write access. . . . . . . . . . . . 120NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122NAND controller waveforms for common memory read access. . . . . . . . . . . . . . . . . . . . 122NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 123SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124SD default mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 127Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127WLCSP64+2 - 0.400 mm pitch wafer level chip size package outline . . . . . . . . . . . . . . . 128LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 129Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129LQFP144, 20 x 20 mm, 144-pin low-profile quadflat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm, package outline . . . . . . . . 131UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline . 132Regulator bypass/regulator off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136Regulator bypass/regulator off and internal reset off . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136USB OTG FS peripheral-only connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137USB OTG FS host-only connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137OTG FS connection dual-role with internal PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138USB OTG HS peripheral-only connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138USB OTG HS host-only connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139OTG HS connection dual-role with external PHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139Complete audio player solution 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Complete audio player solution 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Audio player solution using PLL, PLLI2S, USB and 1 crystal. . . . . . . . . . . . . . . . . . . . . . 141Audio PLL (PLLI2S) providing accurate I2S clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141Master clock (MCK) used to drive the external audio DAC. . . . . . . . . . . . . . . . . . . . . . . . 142Master clock (MCK) not used to drive the external audio DAC. . . . . . . . . . . . . . . . . . . . . 1428/147Doc ID 15818 Rev 5

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxIntroduction1 Introduction

This datasheet provides the description of the STM32F205xx and STM32F207xx lines of

microcontrollers. For more details on the whole STMicroelectronics STM32? family, please

refer to Section2.1: Full compatibility throughout the family.

The STM32F205xx and STM32F207xx datasheet should be read in conjunction with the

STM32F20x/STM32F21x reference manual.

For information on programming, erasing and protection of the internal Flash memory,

please refer to the STM32F20x/STM32F21x Flash programming manual.

The reference and Flash programming manuals are both available from the

STMicroelectronics website www.st.com.

For information on the Cortex?-M3 core please refer to the Cortex?-M3 Technical

Reference Manual, available from the www.arm.com website at the following address:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.

Doc ID 15818 Rev 59/147

205 STM32F205xx207xx参考手册

DescriptionSTM32F205xx, STM32F207xx2 Description

The STM32F205xx and STM32F207xx family is based on the high-performance ARM?

Cortex?-M3 32-bit RISC core operating at a frequency of up to 120 MHz. The family

incorporates high-speed embedded memories (Flash memory up to 1 Mbyte, up to

128Kbytes of system SRAM), up to 4Kbytes of backup SRAM, and an extensive range of

enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit

multi-AHB bus matrix.

The devices also feature an adaptive real-time memory accelerator (ART Accelerator?)

which allows to achieve a performance equivalent to 0 wait state program execution from

Flash memory at a CPU frequency up to 120MHz. This performance has been validated

using the CoreMark benchmark.

All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose

16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers.

a true number random generator (RNG). They also feature standard and advanced

communication interfaces. New advanced peripherals include an SDIO, an enhanced

flexible static memory control (FSMC) interface (for devices offered in packages of 100 pins

and more), and a camera interface for CMOS sensors.

●Up to three I2CsThree SPIs, two I2Ss. To achieve audio class accuracy, the I2S peripherals can be

clocked via a dedicated internal audio PLL or via an external PLL to allow

synchronization.

4 USARTs and 2 UARTs

An USB OTG full-speed and a USB OTG full-speed with high-speed capability (with the ULPI),

Two CANs

An SDIO interface

Ethernet and the camera interface available on STM32F207xx devices only.●●●●●

The STM32F205xx and STM32F207xx family operates in the –40 to +105°C temperature

range from a 1.8V to 3.6V power supply. A comprehensive set of power-saving mode

allows the design of low-power applications.

The STM32F205xx and STM32F207xx family offers devices in four packages ranging from

64 pins to 176 pins. The set of included peripherals changes with the device chosen.

These features make the STM32F205xx and STM32F207xx microcontroller family suitable

for a wide range of applications:

●Motor drive and application controlMedical equipmentIndustrial applications: PLC, inverters, circuit breakersPrinters, and scannersAlarm systems, video intercom, and HVACHome audio appliances

Figure4 shows the general block diagram of the device family.

10/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

Table 2.STM32F205xx and STM32F207xx features and peripheral counts

PeripheralsSTM32F205RxSTM32F205VxSTM32F205ZxSTM32F207VxSTM32F207ZxSTM32F207IxFlash memory in

Kbytes128256512768102412825651276810242565127681024256512768102425651276810242565127681024SRAM in System6496649696

Kbytes(48+16)(80+16)128(112+16)(48+16)(80+16)128 (112+16)(80+16)128 (112+16)128 (112+16)

Backup4444

FSMC memory

controllerNoYes

EthernetNoYes

General-

purpose10

TimersAdvanced

-control2

Doc ID 15818 Rev 5Basic2

Random number

generatorYes

SPI / (I2S)3 (2)

IC3

USART4

Comm. UART2

interfacesUSB OTG

FS

USB OTG 1HS/FS1FS, 1HS/FS

HS

CAN2

Camera interfaceNoYes

GPIOs51821148211414012-bit ADC3

Number of channels16162416242412-bit DACYes

Number of channels2

11/147STM32F205xx, STM32F207xxDescription

205 STM32F205xx207xx参考手册

12/147Table 2.STM32F205xx and STM32F207xx features and peripheral counts (continued)

PeripheralsSTM32F205RxSTM32F205VxSTM32F205ZxSTM32F207VxSTM32F207ZxSTM32F207IxMaximum CPU

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

frequency 120 MHz

Operating voltage 1.8 V to 3.6 V

Operating Ambient temperatures: –40 to +85 °C /–40 to +105 °C

temperaturesJunction temperature: –40 to + 125 °C

LQFP64PackageWLCSP64+2LQFP100LQFP144LQFP100LQFP144LQFP176

UFBGA176

1.Package not in production and available for development only.

Doc ID 15818 Rev 5DescriptionSTM32F205xx, STM32F207xx

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxDescription

2.1 Full compatibility throughout the family

The STM32F205xx and STM32F207xx constitute the STM32F20x family whose members

are fully pin-to-pin, software and feature compatible, allowing the user to try different

memory densities and peripherals for a greater degree of freedom during the development

cycle.

The STM32F205xx and STM32F207xx devices maintain a close compatibility with the

whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The

STM32F205xx and STM32F207xx, however, are not drop-in replacements for the

STM32F10xxx devices: the two families do not have the same power scheme, and so their

power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F20x

family remains simple as only a few pins are impacted.

Figure1 compatible board design between the STM32F20x and the STM32F10xxx family.

205 STM32F205xx207xx参考手册

Doc ID 15818 Rev 513/147

205 STM32F205xx207xx参考手册

Description

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xx14/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxDescription

2.2 Device overview

205 STM32F205xx207xx参考手册

Doc ID 15818 Rev 515/147

205 STM32F205xx207xx参考手册

DescriptionSTM32F205xx, STM32F207xx2.2.1 ARM? Cortex?-M3 core with embedded Flash and SRAM

The ARM Cortex-M3 processor is the latest generation of ARM processors for embedded

systems. It was developed to provide a low-cost platform that meets the needs of MCU

implementation, with a reduced pin count and low-power consumption, while delivering

outstanding computational performance and an advanced response to interrupts.

The ARM Cortex-M3 32-bit RISC processor features exceptional code-efficiency, delivering

the high-performance expected from an ARM core in the memory size usually associated

with 8- and 16-bit devices.

With its embedded ARM core, the STM32F205xx and STM32F207xx family is compatible

with all ARM tools and software.

Figure 1 shows the general block diagram of the STM32F20x family.

2.2.2 Memory protection unit

The memory protection unit (MPU) is used to separate the processing of tasks from the data

protection. The MPU can manage up to 8 protection areas that can all be further divided up

into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes

of addressable memory.

The memory protection unit is especially helpful for applications where some critical or

certified code has to be protected against the misbehavior of other tasks. It is usually

managed by an RTOS (real-time operating system). If a program accesses a memory

location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS

environment, the kernel can dynamically update the MPU area setting, based on the

process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

2.2.3 Adaptive real-time memory accelerator (ART Accelerator?)

The ART Accelerator? is a memory accelerator which is optimized for STM32 industry-

standard ARM? Cortex?-M3 processors. It balances the inherent performance advantage

of the ARM Cortex-M3 over Flash memory technologies, which normally requires the

processor to wait for the Flash memory at higher operating frequencies.

To release the processor full 150 DMIPS performance at this frequency, the accelerator

implements an instruction prefetch queue and branch cache which increases program

execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the

performance achieved thanks to the ART accelerator is equivalent to 0 wait state program

execution from Flash memory at a CPU frequency up to 120MHz.

2.2.4 Embedded Flash memory

The STM32F20x devices embed a 128-bit wide Flash memory of 128 Kbytes, 256 Kbytes,

512 Kbytes, 768 Kbytes or 1 Mbytes available for storing programs and data.

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

16/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxDescription

2.2.5 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

2.2.6 True random number generator (RNG)

All STM32F2xxx products embed a true RNG that delivers 32-bit random numbers

produced by an integrated analog circuit.

2.2.7 Embedded SRAM

All STM32F20x products embed up to 128 Kbytes of system SRAM accessed (read/write) at

CPU clock speed with 0 wait states, plus 4 Kbytes of backup SRAM.

2.2.8 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

205 STM32F205xx207xx参考手册

Doc ID 15818 Rev 517/147

205 STM32F205xx207xx参考手册

DescriptionSTM32F205xx, STM32F207xx2.2.9 DMA

The flexible 16-stream general-purpose DMAs (8 streams for DMA1 and 8 streams for

DMA2) are able to manage memory-to-memory, peripheral-to-memory and memory-to-

peripheral transfers. They share some centralized FIFOs for APB/AHB peripherals, support

burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB)

and performance.

The two DMA controllers support circular buffer management, so that no specific code is

needed when the controller reaches the end of the buffer. The two DMA controllers also

have a double buffering feature, which automates the use and switching of two memory

buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software

trigger on each stream. Configuration is made by software and transfer sizes between

source and destination are independent.

The DMA can be used with the main peripherals:

●SPI and I2SI2CUSART and UARTGeneral-purpose, basic and advanced-control timers TIMxDACSDIOCamera interface (DCMI)ADC.

2.2.10 FSMC (flexible static memory controller)

The FSMC is embedded in the STM32F205xx and STM32F207xx family. It has four Chip

Select outputs supporting the following modes: PCCard/Compact Flash, SRAM, PSRAM,

NOR Flash and NAND Flash.

Functionality overview:

●Write FIFOCode execution from external memory except for NAND Flash and PC CardThe targeted frequency, fCLK, is equal to HCLK/2, so external access is at 60 MHz

when HCLK is at 120 MHz and external access is at 30 MHz when HCLK is at 60 MHz

LCD parallel interface

The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It

supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to

specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-

effective graphic applications using LCD modules with embedded controllers or high

performance solutions using external controllers with dedicated acceleration.

18/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxDescription

2.2.11 Nested vectored interrupt controller (NVIC)

The STM32F205xx and STM32F207xx embed a nested vectored interrupt controller able to

handle up to 87 maskable interrupt channels (not including the 16 interrupt lines of the

Cortex?-M3) and 16 priority levels.

●Closely coupled NVIC gives low-latency interrupt processingInterrupt entry vector table address passed directly to the coreClosely coupled NVIC core interfaceAllows early processing of interruptsProcessing of late arriving, higher-priority interruptsSupport tail chainingProcessor state automatically savedInterrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt

latency.

2.2.12 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 23 edge-detector lines used to generate

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

interrupt/event requests. Each line can be independently configured to select the trigger

event (rising edge, falling edge, both) and can be masked independently. A pending register

maintains the status of the interrupt requests. The EXTI can detect an external line with a

pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected

to the 16 external interrupt lines.

2.2.13 Clocks and startup

System clock selection is performed on startup, however, the 16 MHz internal RC oscillator

is selected as the default CPU clock on reset. An external 4-26 MHz clock can be selected,

in which case it is monitored for failure. If failure is detected, the system automatically

switches back to the internal RC oscillator. A software interrupt is generated if enabled.

Similarly, full interrupt management of the PLL clock entry is available when necessary (for

example if an indirectly used external oscillator fails).

The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full

temperature range.

The advanced clock controller clocks the core and all peripherals using a single crystal or

oscillator. In particular, the ethernet and USB OTG FS peripherals can be clocked by the

system clock.

Several prescalers and PLLs allow the configuration of the two AHB buses, the high-speed

APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two

AHB buses is 120MHz and the maximum frequency the high-speed APB domains is

60MHz. The maximum allowed frequency of the low-speed APB domain is 30MHz.

In order to achieve audio class performance, a specific crystal can be used. In this case, the

I2S master clock can generate all standard sampling frequencies from 8kHz to 96kHz.

Doc ID 15818 Rev 519/147

205 STM32F205xx207xx参考手册

DescriptionSTM32F205xx, STM32F207xx2.2.14 Boot modes

At startup, boot pins are used to select one out of three boot options:

●Boot from user Flashboot from system memoryBoot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by

using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB6), USB

OTG FS in Device mode (PA9/PA11/PA12) through DFU (device firmware upgrade).

2.2.15 Power supply schemes

●VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when

enabled), provided externally through VDD pins. On WLCSP package, VDD ranges from

1.65 to 3.6V.

VSSA, VDDA = 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks,

RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.

VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup

registers (through power switch) when VDD is not present.●●

2.2.16 Power supply supervisor

The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry

coupled with a Brownout reset (BOR) circuitry. At power-on, BOR is always active, and

ensures proper operation starting from 1.8V. After the 1.8V BOR threshold is reached, the

option byte loading process starts, either to confirm or modify default thresholds, or to

disable BOR permanently. Three BOR thresholds are available through option bytes.

The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or

VBOR, without the need for an external reset circuit. On devices in WLCSP package, BOR

can be inactivated by setting IRROFF to VDD (see Section2.2.17: Voltage regulator).

The device also features an embedded programmable voltage detector (PVD) that monitors

the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be

generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher

than the VPVD threshold. The interrupt service routine can then generate a warning

message and/or put the MCU into a safe state. The PVD is enabled by software.

2.2.17 Voltage regulator

The regulator has five operating modes:

●Regulator on

–Main regulator mode (MR)Low power regulator (LPR)Power-down

Regulator bypass/regulator off

Regulator bypass/regulator off and internal reset off●Regulator off––

20/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxDescription

Regulator on

These modes are activated by default on LQFP packages. On WLCPS66 and UFBGA176,

they are activated by setting REGOFF pin to VSS. VDD minimum value is 1.8V.

There are three regulator on modes:

●MR is used in the nominal regulation mode (Run)LPR is used in the Stop modes7Power-down is used in Standby mode:

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

The regulator output is in high impedance: the kernel circuitry is powered down,

inducing zero consumption (but the contents of the registers and SRAM are lost).

Regulator off

●Regulator bypass/regulator off

This mode is activated by setting REGOFF pin to VDD. It is available only on the

UFBGA and WLCSP packages.

The regulator bypass/regulator off mode allows to supply externally a 1.2V voltage

source through VCAP_1 and VCAP_2 pins, in addition to VDD.

VDD minimum value is 1.8V.

The following conditions must be respected in Regulator bypass mode:

–VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection between power domains. If the time for VCAP_1 and VCAP_2 to reach 1.08V is faster than the time for VDD to

reach 1.8V, then PA0 should be connected to the NRST pin (see Figure6).

Otherwise, PA0 should be asserted low externally until VDD reaches 1.8V (see

Figure7).

In regulator bypass only mode, PA0 cannot be used as a GPIO pin.

●Regulator bypass/regulator off and internal reset off

This mode is activated by setting IRROFF pin to VDD. IRROFF cannot be activated in

conjunction with REGOFF. This mode is available only on the WLCSP package. It

allows to supply externally a 1.2V voltage source through VCAP_1 and VCAP_2 pins, in

addition to VDD.

VDD minimum value is 1.65V.

The following conditions must be respected in Regulator bypass mode (see Figure8):

–VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection between power domains. External reset should be used to cover both conditions: until VCAP_1 and VCAP_2 reach 1.08V and until VDD reaches 1.65V

PA0 can be used as a standard GPIO pin.

Doc ID 15818 Rev 521/147

205 STM32F205xx207xx参考手册

DescriptionFigure 6.STM32F205xx, STM32F207xxStartup in regulator bypass/regulator off mode: slow VDD slope

205 STM32F205xx207xx参考手册

Figure 7.Startup in regulator bypass/regulator off mode: slow VDD slope

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

22/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxDescription

2.2.18 Real-time clock (RTC), backup SRAM and backup registers

The backup domain of the STM32F205xx and STM32F207xx includes:

●The real-time clock (RTC) 4 Kbytes of backup SRAM20 backup registers

The RTC provides a set of continuously running counters which can be used with suitable

software to provide a clock calendar function, an alarm interrupt and a periodic interrupt. It is

clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC

oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a

typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to

compensate for any natural quartz deviation.

The RTC features calendar registers with seconds, minutes, hours, week day, date, month,

year. Two alarm registers are used to generate an alarm at a specific time and calendar

fields can be independently masked for alarm comparison. To generate a periodic interrupt,

a 16-bit programmable binary auto-reload downcounter with programmable resolution is

available and allows automatic wakeup and periodic alarms from every 120 μs to every 36

hours.

A 20-bit prescaler is used for the time base clock. It is by default configured to generate a

time base of 1 second from a clock at 32.768 kHz.

The backup SRAM size is 4 Kbytes and can be enabled by software. When the backup RAM

is enabled the power consumption in Standby or VBAT mode is slightly higher (see

Section2.2.19: Low-power modes).

The backup registers are 32-bit registers used to store 80 bytes of user application data

when VDD power is not present. Backup registers are not reset by a system, a power reset,

or when the device wakes up from the Standby mode (see Section2.2.19: Low-power

modes).

The RTC, backup RAM and backup registers are supplied through a switch that takes power

from either the VDD supply when present or the VBAT pin.

2.2.19 Low-power modes

The STM32F205xx and STM32F207xx support three low-power modes to achieve the best

compromise between low power consumption, short startup time and available wakeup

sources:

●Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can

wake up the CPU when an interrupt/event occurs.

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

●Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of

SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC

Doc ID 15818 Rev 523/147

205 STM32F205xx207xx参考手册

DescriptionSTM32F205xx, STM32F207xxand the HSE crystal oscillators are disabled. The voltage regulator can also be put

either in normal or in low-power mode.

The device can be woken up from the Stop mode by any of the EXTI line. The EXTI line

source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /

tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup.

●Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal

voltage regulator is switched off so that the entire 1.2 V domain is powered off. The

PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering

Standby mode, the SRAM and register contents are lost except for registers in the

backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,

a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event

occurs.

Note:1The RTC, the IWDG, and the corresponding clock sources are not stopped when the device

enters the Stop or Standby mode.

2.2.20 VBAT operation

The VBAT pin allows to power the device VBAT domain from an external battery or an

external supercapacitor.

VBAT operation is activated when VDD is not present.

Note:When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events

do not exit it from VBAT operation.

2.2.21 Timers and watchdogs

The STM32F205xx and STM32F207xx devices include two advanced-control timers, eight

general-purpose timers, two basic timers and two watchdog timers.

Table3 compares the features of the advanced-control, general-purpose and basic timers.

Table 3.Timer feature comparison

DMA Capture/Max Max request compare interface timer outputgenerationchannelsclockclock

Yes4Yes60 MHz120

MHz

60

MHz

60

MHz

60

MHz Counter Counter Prescaler Timer typeTimerresolutiontypefactorAdvanced-TIM1, controlTIM8TIM2, TIM5TIM3, TIM4TIM6, TIM7Up, Any integer Down, between 1 Up/downand 65536Up, Any integer Down, between 1 Up/downand 65536Up, Any integer Down, between 1 Up/downand 65536UpAny integer between 1

and 6553616-bit32-bitYes4No30 MHzGeneral purpose16-bitYes4No30 MHzBasic16-bitYes0No30 MHz

24/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxTable 3.Timer feature comparison (continued)Description

Counter Counter Prescaler Timer typeTimerresolutiontypefactor

Any integer

between 1

and 65536

Any integer

between 1

and 65536

Any integer

between 1

and 65536

Any integer

between 1

and 65536DMA Capture/Max Max request compare interface timer outputgenerationchannelsclockclockNo2No60 MHz120 MHz120 MHz60 MHz60 MHzTIM916-bitUpGeneral purposeTIM10, TIM1116-bitUpNo1No60 MHzTIM1216-bitUpNo2No30 MHzTIM13, TIM1416-bitUpNo1No30 MHz

Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

●Input captureOutput comparePWM generation (edge- or center-aligned modes)One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-100%).

The TIM1 and TIM8 counters can be frozen in debug mode. Many of the advanced-control timer features are shared with those of the standard TIMx timers which have the same architecture. The advanced-control timer can therefore work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32F20x devices (see Table3 for differences).

●TIM2, TIM3, TIM4, TIM5

The STM32F20x include 4 full-featured general-purpose timers. TIM2 and TIM5 are 32-bit timers, and TIM3 and TIM4 are 16-bit timers. The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 32-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.Doc ID 15818 Rev 525/147

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

205 STM32F205xx207xx参考手册

DescriptionSTM32F205xx, STM32F207xxThe TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the

other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the

Timer Link feature for synchronization or event chaining.

The counters of TIM2, TIM3, TIM4, TIM5 can be frozen in debug mode. Any of these

general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are

capable of handling quadrature (incremental) encoder signals and the digital outputs

from 1 to 4 hall-effect sensors.

●TIM10, TIM11 and TIM9

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM10 and TIM11 feature one independent channel, whereas TIM9 has two

independent channels for input capture/output compare, PWM or one-pulse mode

output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured

general-purpose timers. They can also be used as simple time bases.

●TIM12, TIM13 and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM13 and TIM14 feature one independent channel, whereas TIM12 has two

independent channels for input capture/output compare, PWM or one-pulse mode

output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured

general-purpose timers.

They can also be used as simple time bases.

2.2.22 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be

used as a generic 16-bit time base.

2.2.23 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is

clocked from an independent 32 kHz internal RC and as it operates independently from the

main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog

to reset the device when a problem occurs, or as a free-running timer for application timeout

management. It is hardware- or software-configurable through the option bytes.

The counter can be frozen in debug mode.

2.2.24 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It

can be used as a watchdog to reset the device when a problem occurs. It is clocked from the

main clock. It has an early warning interrupt capability and the counter can be frozen in

debug mode.

26/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxDescription

2.2.25 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard

downcounter. It features:

●●●●

A 24-bit downcounterAutoreload capability

Maskable system interrupt generation when the counter reaches 0Programmable clock source

2.2.26 I2C bus

Up to three I2C bus interfaces can operate in multimaster and slave modes. They can

support the Standard- and Fast-modes. They support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

2.2.27 Universal synchronous/asynchronous receiver transmitters

(UARTs/USARTs)

The STM32F205xx and STM32F207xx embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3 and USART6) and two universal asynchronous receiver transmitters (UART4 and UART5).

These six interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to

communicate at speeds of up to 7.5 Mbit/s. The other available interfaces communicate at up to 3.75 Mbit/s.

USART1, USART2, USART3 and USART6 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

Table 4.

USART feature comparison

Max. baud rate Max. baud rate

Smartcard in Mbit/s in Mbit/s APB (ISO7816)(oversampling (oversampling mapping

by 16)by 8)

X

3.75

7.5

APB2

(max. 60MHz)APB1 (max. 30MHz)APB1 (max. 30MHz)

USART Modem SPI

LINirDA

namefeatures(RTS/CTS)master

USART1XXXXX

USART2XXXXXX1.873.75

USART3XXXXXX1.873.75

Doc ID 15818 Rev 527/147

205 STM32F205xx207xx参考手册

DescriptionTable 4.USART feature comparison (continued)STM32F205xx, STM32F207xxUSART Modem SPI LINirDAnamefeatures(RTS/CTS)masterMax. baud rate Max. baud rate Smartcard in Mbit/s in Mbit/s APB (ISO7816)(oversampling (oversampling mapping

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

by 16)by 8)

-1.873.75APB1 (max.

30MHz)

APB1

(max.

30MHz)

APB2

(max.

60MHz)UART4X-X-XUART5X-XD-X-3.753.75USART6XXXXXX3.757.5

2.2.28 Serial peripheral interface (SPI)

The STM32F20x feature up to three SPIs in slave and master modes in full-duplex and

simplex communication modes. SPI1 can communicate at up to 30 Mbits/s, SPI2 and SPI3 can communicate at up to 15 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.

The SPI interface can be configured to operate in TI mode for communications in master

mode and slave mode.

2.2.29 Inter-integrated sound (I2S)

Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can be

operated in master or slave mode, and can be configured to operate with a 16-/32-bit

resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 96 kHz are supported. When either or both of the I2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling

frequency.

2.2.30 SDIO

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System

Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with the SD Memory Card Specification Version 2.0.

The SDIO Card Specification Version 2.0 is also supported with two different databus

modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1.28/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxDescription

2.2.31 Ethernet MAC interface with dedicated DMA and IEEE1588 support

Peripheral available only on the STM32F207xx devices.

The STM32F207xx devices provide an IEEE-802.3-2002-compliant media access controller

(MAC) for ethernet LAN communications through an industry-standard medium-

independent interface (MII) or a reduced medium-independent interface (RMII). The

STM32F207xx requires an external physical interface device (PHY) to connect to the

physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F207xx MII

port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz

(MII) or 50 MHz (RMII) output from the STM32F207xx.

The STM32F207xx includes the following features:

●Supports 10 and 100 Mbit/s ratesDedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors (see the STM32F20x and STM32F21x reference manual for

details)

Tagged MAC frame support (VLAN support)

Half-duplex (CSMA/CD) and full-duplex operation

MAC control sublayer (control frames) support

32-bit CRC generation and removal

Several address filtering modes for physical and multicast address (multicast and group addresses)

32-bit status code for each transmitted or received frame

Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes, that is 4 Kbytes in total

Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input

Triggers interrupt when system time becomes greater than target time●●●●●●●●●

2.2.32 Controller area network (CAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1

Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as

extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive

FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one

CAN is used). The 256 bytes of SRAM which are allocated for each CAN are not shared

with any other peripheral.

2.2.33 Universal serial bus on-the-go full-speed (OTG_FS)

The STM32F205xx and STM32F207xx embed an USB OTG full-speed device/host/OTG

peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the

USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable

endpoint setting and supports suspend/resume. The USB OTG full-speed controller

Doc ID 15818 Rev 529/147

205 STM32F205xx207xx参考手册

DescriptionSTM32F205xx, STM32F207xxrequires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

oscillator. The major features are:

●Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizingSupports the session request protocol (SRP) and host negotiation protocol (HNP)4 bidirectional endpoints8 host channels with periodic OUT supportHNP/SNP/IP inside (no need for any external resistor)For OTG/Host modes, a power switch is needed in case bus-powered devices are connectedInternal FS OTG PHY support External FS OTG PHY support through an I2C connection

2.2.34 Universal serial bus on-the-go high-speed (OTG_HS)

The STM32F205xx and STM32F207xx devices embed a USB OTG high-speed (up to

480Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and

high-speed operations. It integrates the transceivers for full-speed operation (12MB/s) and

features a UTMI low-pin interface (ULPI) for high-speed operation (480MB/s). When using

the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.

The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG

1.0 specification. It has software-configurable endpoint setting and supports

suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock

that is generated by a PLL connected to the HSE oscillator. The major features are:

●Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizingSupports the session request protocol (SRP) and host negotiation protocol (HNP)6 bidirectional endpoints12 host channels with periodic OUT supportInternal FS OTG PHY support External FS OTG PHY support through an I2C connectionExternal HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using

the 60MHz output.

Internal USB DMA

HNP/SNP/IP inside (no need for any external resistor)

for OTG/Host modes, a power switch is needed in case bus-powered devices are connected●●●

2.2.35 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I2S application. It allows to

achieve error-free I2S sampling clock accuracy without compromising on the CPU

performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I2S sample rate change without

disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging

from 8KHz to 96KHz.

30/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxDescription

In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S

flow with an external PLL (or Codec output).

2.2.36 Digital camera interface (DCMI)

The camera interface is not available in STM32F205xx devices.

STM32F207xx products embed a camera interface that can connect with camera modules

and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The

camera interface can sustain up to 27 Mbyte/s at 27 MHz or 48Mbyte/s at 48 MHz. It

features:

●Programmable polarity for the input pixel clock and synchronization signalsParallel data communication can be 8-, 10-, 12- or 14-bitSupports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)Supports continuous mode or snapshot (a single frame) modeCapability to automatically crop the image

2.2.37 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain,

with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)

or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog

alternate functions. All GPIOs are high-current-capable and have speed selection to better

manage internal noise, power consumption and electromagnetic emission.

The I/O alternate function configuration can be locked if needed by following a specific

sequence in order to avoid spurious writing to the I/Os registers.

To provide fast I/O handling, the GPIOs are on the fast AHB1 bus with a clock up to

120MHz that leads to a maximum I/O toggling speed of 60 MHz.

2.2.38 ADCs (analog-to-digital converters)

Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16

external channels, performing conversions in the single-shot or scan mode. In scan mode,

automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

●Simultaneous sample and holdInterleaved sample and hold

The ADC can be served by the DMA controller. An analog watchdog feature allows very

precise monitoring of the converted voltage of one, some or all selected channels. An

interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the timers TIM1, TIM2, TIM3, TIM4, TIM5 and TIM8 can be

internally connected to the ADC start trigger and injection trigger, respectively, to allow the

application to synchronize A/D conversion and timers.

Doc ID 15818 Rev 531/147

205 STM32F205xx207xx参考手册

DescriptionSTM32F205xx, STM32F207xx2.2.39 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two

analog voltage signal outputs. The design structure is composed of integrated resistor

strings and an amplifier in inverting configuration.

This dual digital Interface supports the following features:

●two DAC converters: one for each output channel8-bit or 12-bit monotonic outputleft or right data alignment in 12-bit modesynchronized update capabilitynoise-wave generationtriangular-wave generationdual DAC channel independent or simultaneous conversionsDMA capability for each channelexternal triggers for conversioninput voltage reference VREF+

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through

the timer update outputs that are also connected to different DMA streams.

2.2.40 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The

conversion range is between 1.8 V and 3.6 V. The temperature sensor is internally

connected to the ADC1_IN16 input channel which is used to convert the sensor output

voltage into a digital value.

As the offset of the temperature sensor varies from chip to chip due to process variation, the

internal temperature sensor is mainly suitable for applications that detect temperature

changes instead of absolute temperatures. If an accurate temperature reading is needed,

then an external temperature sensor part should be used.

2.2.41 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug

port that enables either a serial wire debug or a JTAG probe to be connected to the target.

The JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a

specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

2.2.42 Embedded Trace Macrocell?

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data

flow inside the CPU core by streaming compressed data at a very high rate from the

STM32F20x through a small number of ETM pins to an external hardware trace port

analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or

any other high-speed channel. Real-time instruction and data flow activity can be recorded

and then formatted for display on the host computer that runs the debugger software. TPA

hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

32/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxPinouts and pin description

3 Pinouts and pin description

Figure 9.

STM32F20x LQFP64 pinout

0(????/3#?).0(????/3#?/54

.2340#??0#??0#??0#??633!6$$!0!????7+50

0!??0!??

64636261605958575655545352515049

481

472

463

454

445

436

427

418

,1&0????409

3910

3811

3712

3613

3514

3415

3316

6$$???????6#!0???0!????????0!????????0!????????0!????????0!??????0!??????0#??????0#??????0#??????0#??????0"????????0"????????0"????????0"??????

0!??633???6$$???0!??0!??0!??0!??0#??0#??0"??0"??0"??0"????0"????6#!0???6$$???

AI??????????B

1.Top view.

Doc ID 15818 Rev 533/147

205 STM32F205xx207xx参考手册

Pinouts and pin description

Figure 11.STM32F20x LQFP100 pinout

STM32F205xx, STM32F207xx

0%??0%??0%??0%??0%??6"!4

0#??????24#?!&??0#??????/3#?????).0#??????/3#?????/54

633???6$$???

0(????/3#?).0(????/3#?/54

.2340#??0#??0#??0#??6$$?????633!62%&??6$$!0!????7+50

0!??0!????????????????????????????????????????????????????????????????????????????????????

??????????????????????????????????????????????????????????????????????????????????????????????????????

????????????????????????????????????????????????????????????????????????????????????????????????????

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

6$$???2&50%??????0%??????0"??????0"??????"//4??????0"??????0"??????0"??????0"??????0"??????0$??????0$??????0$??????0$??????0$??????0$??????0$??????0$??????0#????????0#????????0#????????0!????????0!??????

,1&0??????

6$$?????633???6#!0???????0!??????????0!??????????0!??????????0!??????????0!????????0!????????0#??????0#??????0#??????0#??????0$????????0$????????0$????????0$????????0$????????0$????????0$??????0$??????0"????????0"????????0"????????0"????????

0!??633???6$$???0!??0!??0!??0!??0#??0#??0"??0"??0"??0%??0%??0%??0%????0%????0%????0%????0%????0%????0"????0"????6#!0???6$$???????????????????????????????????????????????????????????????????????????????????????????????????????

AI??????????D

1.RFU means “reserved for future use”.

34/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xx

Pinouts and pin description

1.RFU means “reserved for future use”.

Doc ID 15818 Rev 5

35/147

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

Pinouts and pin description

STM32F205xx, STM32F207xx

1.Package not in production and available for development only.2.RFU means “reserved for future use”.

36/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xx

Pinouts and pin description

1.RFU means “reserved for future use”.2.Top view.

Doc ID 15818 Rev 537/147

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

Pinouts and pin descriptionTable 5.

WLCSP64+2

STM32F205xx, STM32F207xx

STM32F20x pin and ball definitions

I / O Level(2)

Pins

UFBGA176

Type(1)

LQFP100

LQFP144

LQFP176

Main function(3) (after reset)

LQFP64

Pin nameAlternate functions

Other functions

-----1-234-----------------

-----A9-B8B9C9-----------

123456-789-----------

123456-789-----

12345678910

A2A1B1B2B3C1D2D1

PE2PE3PE4PE5PE6VBATPI8(4)PC13(4)PC15(4)-OSC32_OUT(6)

PI9PI10PI11VSS_13VDD_13PF0PF1PF2PF3(6)PF4(6)PF5(6)VSS_5VDD_5PF6(6)PF7(6)PF8(6)PF9(6)

I/OFTI/OFTI/OFTI/OFTI/OFTSI/OFTI/OFT

PE2PE3PE4PE5PE6VBATPI8(5)PC13(5)PC14(5)PC15(5)PI9PI10PI11VSS_13VDD_13PF0PF1PF2PF3PF4PF5VSS_5VDD_5PF6PF7PF8PF9

TRACECLK/ FSMC_A23 /

ETH_MII_TXD3TRACED0/FSMC_A19TRACED1/FSMC_A20 /

DCMI_D4TRACED2 / FSMC_A21 / TIM9_CH1 / DCMI_D6TRACED3 / FSMC_A22 / TIM9_CH2 / DCMI_D7

RTC_AF2RTC_AF1OSC32_INOSC32_OUT

CAN1_RX ETH_MII_RX_EROTG_HS_ULPI_DIR

E1PC14(4)-OSC32_IN(6)I/OFTF1

I/OFTI/OFTI/OFTI/OFTSSI/OFTI/OFTI/OFTI/OFTI/OFTI/OFTSSI/OFTI/OFTI/OFTI/OFT

11D312E313E41415

F2F3

1016E21117H31218H213191420

J2J3

FSMC_A0 / I2C2_SDAFSMC_A1 / I2C2_SCLFSMC_A2 / I2C2_SMBA

FSMC_A3FSMC_A4FSMC_A5

ADC3_IN9ADC3_IN14ADC3_IN15

1521K3

H9101622G2-----111723G3----1824K21925K120262127

L3L2

TIM10_CH1 / FSMC_NIORDTIM11_CH1/FSMC_NREG

TIM13_CH1 / FSMC_NIOWRTIM14_CH1 / FSMC_CD

ADC3_IN4ADC3_IN5ADC3_IN6ADC3_IN7

38/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxTable 5.

WLCSP64+2

Pinouts and pin description

STM32F20x pin and ball definitions (continued)

I / O Level(2)

Pins

UFBGA176

Type(1)

LQFP100

LQFP144

LQFP176

Main function(3) (after reset)

LQFP64

Pin nameAlternate functions

Other functions

-56789

--2228L1

PF10(6)PH0(6)-OSC_INPH1(6)-OSC_OUT

NRSTPC0(6)PC1(6)

(6)

I/OFTI/OFTI/OFTI/OI/OFTI/OFT

PF10PH0PH1NRSTPC0PC1

FSMC_INTRADC3_IN8OSC_INOSC_OUT

E9122329G1F9132430H1E8142531

J1

OTG_HS_ULPI_STP

ETH_MDCSPI2_MISO / OTG_HS_ULPI_DIR / ETH_MII_TXD2SPI2_MOSI / I2S2_SD / OTG_HS_ULPI_NXT / ETH_MII_TX_CLK

ADC123_IN10ADC123_IN11ADC123_IN12ADC123_IN13

G9152632M2F8162733M3

10D7172834M4PC2I/OFTPC2

11G8182935M5-12--13

---193036

-

PC3

(6)

I/OFTSSSSS

PC3VDD_12VSSAVREF-VREF+VDDA

VDD_12VSSAVREF-VREF+VDDA

PA0(7)-WKUP(6)

203137M1---N1

F7213238P1-223339R1

14E7233440N3

USART2_CTS/ UART4_TX/

ETH_MII_CRS / ADC123_CH0

I/OFTPA0-WKUP

TIM2_CH1_ETR//WKUPTIM5_CH1 / TIM8_ETR

USART2_RTS / UART4_RX/

ETH_RMII_REF_CLK / ETH_MII_RX_CLK / TIM5_CH2 / TIM2_CH2

15H8243541N2

PA1(6)

I/OFTPA1ADC123_IN1

16J9253642P2----------------43

F4

PA2

(6)

I/OFTI/OFTI/OFTI/OFTI/OFT

PA2PH2PH3PH4PH5

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

USART2_TX/TIM5_CH3 /

TIM9_CH1 / TIM2_CH3 / ADC123_IN2

ETH_MDIO

ETH_MII_CRSETH_MII_COLI2C2_SCL / OTG_HS_ULPI_NXT

I2C2_SDA

PH2PH3PH4PH5

44G445H446

J4

Doc ID 15818 Rev 539/147

205 STM32F205xx207xx参考手册

Pinouts and pin descriptionTable 5.

WLCSP64+2

STM32F205xx, STM32F207xx

STM32F20x pin and ball definitions (continued)

I / O Level(2)

Pins

UFBGA176

Type(1)

LQFP100

LQFP144

LQFP176

Main function(3) (after reset)

LQFP64

Pin nameAlternate functions

Other functions

17G7263747R2

PA3(6)

I/OFTPA3

USART2_RX/TIM5_CH4 / TIM9_CH2 / TIM2_CH4 /

ADC123_IN3

OTG_HS_ULPI_D0 / ETH_MII_COL

18F1273848

H7

-L4

VSS_4REGOFFVDD_4PA4(6)

SI/OS

VSS_4REGOFFVDD_4PA4

SPI1_NSS / SPI3_NSS /

USART2_CK / DCMI_HSYNC / OTG_HS_SOF/ I2S3_WSSPI1_SCK/

OTG_HS_ULPI_CK / / TIM2_CH1_ETR/ TIM8_CHIN

ADC12_IN4 /DAC1_OUT

19E1283949K4

20J8294050N4I/O

21H6304151P4

PA5(6)

I/OPA5

ADC12_IN5/DAC2_OUT

22H5314252P3

PA6(6)

I/OFTPA6

SPI1_MISO /

TIM8_BKIN/TIM13_CH1 /

ADC12_IN6

DCMI_PIXCLK / TIM3_CH1

/ TIM1_BKINSPI1_MOSI/ TIM8_CH1N /

TIM14_CH1TIM3_CH2/

ADC12_IN7

ETH_MII_RX_DV / TIM1_CH1N / RMII_CRS_DVETH_RMII_RX_D0 / ETH_MII_RX_D0ETH_RMII_RX_D1 / ETH_MII_RX_D1

ADC12_IN14ADC12_IN15

23J7324353R3

PA7(6)FT

PA7

24H4334454N525G3344555P5

PC4(6)PC5(6)

I/OFTI/OFT

PC4PC5

26J6354656R5

PB0(6)

I/OFTPB0

TIM3_CH3 / TIM8_CH2N/ OTG_HS_ULPI_D1/

ADC12_IN8

ETH_MII_RXD2 / TIM1_CH2NTIM3_CH4 / TIM8_CH3N/ OTG_HS_ULPI_D2/ ETH_MII_RXD3 / ADC12_IN9 OTG_HS_INTN / TIM1_CH3N

27J5364757R4

PB1(6)

I/OFTPB1

28J4374858M6------4959R65060P6

PB2PF11PF12

I/OFTPB2-BOOT1I/OFTI/OFT

PF11PF12

DCMI_12FSMC_A6

40/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxTable 5.

WLCSP64+2

Pinouts and pin description

STM32F20x pin and ball definitions (continued)

I / O Level(2)

Pins

UFBGA176

Type(1)

LQFP100

LQFP144

LQFP176

Main function(3) (after reset)

LQFP64

Pin nameAlternate functions

Other functions

------------------

------------------

-------

5161M85262N85363N65464R75565P75666N75767M7

VSS_6VDD_6PF13PF14PF15PG0PG1PE7PE8PE9VSS_7VDD_7PE10PE11PE12PE13PE14PE15

SSI/OFTI/OFTI/OFTI/OFTI/OFTI/OFTI/OFTI/OFTSSI/OFTI/OFTI/OFTI/OFTI/OFTI/OFT

VSS_6VDD_6PF13PF14PF15PG0PG1PE7PE8PE9VSS_7VDD_7PE10PE11PE12PE13PE14PE15

FSMC_D7/TIM1_CH2NFSMC_D8/TIM1_CH2FSMC_D9/TIM1_CH3NFSMC_D10/TIM1_CH3FSMC_D11/TIM1_CH4FSMC_D12/TIM1_BKINSPI2_SCK/ I2S2_CK/ I2C2_SCL / USART3_TX / OTG_HS_ULPI_D3 / ETH_MII_RX_ER / OTG_HS_SCL / TIM2_CH3I2C2_SDA/USART3_RX/ OTG_HS_ULPI_D4 / ETH_RMII_TX_EN/ ETH_MII_TX_EN / OTG_HS_SDA / TIM2_CH4

FSMC_A7FSMC_A8FSMC_A9FSMC_A10FSMC_A11FSMC_D4/TIM1_ETRFSMC_D5/TIM1_CH1NFSMC_D6/TIM1_CH1

385868R8395969P8406070P9--6171M96272N9

416373R9426474P10436575R10446676N11456777P11466878R11

29H3476979R12PB10I/OFTPB10

30J2487080R13PB11I/OFTPB11

31J3497181M1032-------507282N10------83M1184N1285M12

VCAP_1VDD_1PH6PH7PH8

SSI/OFTI/OFTI/OFT

VCAP_1VDD_1PH6PH7PH8

I2C2_SMBA / TIM12_CH1 /

ETH_MII_RXD2

I2C3_SCL / ETH_MII_RXD3I2C3_SDA / DCMI_HSYNC

Doc ID 15818 Rev 541/147

205 STM32F205xx207xx参考手册

Pinouts and pin descriptionTable 5.

WLCSP64+2

STM32F205xx, STM32F207xx

STM32F20x pin and ball definitions (continued)

I / O Level(2)

Pins

UFBGA176

Type(1)

LQFP100

LQFP144

LQFP176

Main function(3) (after reset)

LQFP64

Pin nameAlternate functions

Other functions

------

------

------

------

86M1387L1388L1289K1290H1291J12

PH9PH10PH11PH12VSS_14VDD_14

I/OFTI/OFTI/OFTI/OFTSS

PH9PH10PH11PH12VSS_14VDD_14

I2C3_SMBA / TIM12_CH2/

DCMI_D0

TIM5_CH1_ETR /

DCMI_D1TIM5_CH2 / DCMI_D2TIM5_CH3 / DCMI_D3

33J1517392P12PB12I/OFTPB12

SPI2_NSS/I2S2_WS/

I2C2_SMBA/

USART3_CK/ TIM1_BKIN /

CAN2_RX / OTG_HS_ULPI_D5/ ETH_RMII_TXD0 / ETH_MII_TXD0/ OTG_HS_IDSPI2_SCK / I2S2_CK /

USART3_CTS/

TIM1_CH1N /CAN2_TX / OTG_HS_ULPI_D6 / ETH_RMII_TXD1 / ETH_MII_TXD1SPI2_MISO/ TIM1_CH2N / TIM12_CH1 / OTG_HS_DM

USART3_RTS/ TIM8_CH2NSPI2_MOSI / I2S2_SD / TIM1_CH3N / TIM8_CH3N

/ TIM12_CH2 / OTG_HS_DPFSMC_D13 / USART3_TXFSMC_D14 / USART3_RXFSMC_D15 / USART3_CKFSMC_A16/USART3_CTSFSMC_A17/TIM4_CH1 /

USART3_RTSFSMC_A18/TIM4_CH2

34H2527493P13PB13I/OFTPB13

OTG_HS_VBUS

35H1537594R14PB14I/OFTPB14

36G1547695R15PB15I/OFTPB15

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

--------

--------

557796P15567897P14577998N15588099N145981100N136082101M15--83102

-

PD8PD9PD10PD11PD12PD13VSS_8VDD_8

I/OFTI/OFTI/OFTI/OFTI/OFTI/OFTSS

PD8PD9PD10PD11PD12PD13VSS_8VDD_8

84103J13

42/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxTable 5.

WLCSP64+2

Pinouts and pin description

STM32F20x pin and ball definitions (continued)

I / O Level(2)

Pins

UFBGA176

Type(1)

LQFP100

LQFP144

LQFP176

Main function(3) (after reset)

LQFP64

Pin nameAlternate functions

Other functions

-----------

-----------

6185104M146286105L14---------87106L1588107K1589108K1490109K1391110J1592111J1493112H1494113G1295114H13

PD14PD15PG2PG3PG4PG5PG6PG7PG8VSS_9VDD_9PC6

I/OFTI/OFTI/OFTI/OFTI/OFTI/OFTI/OFTI/OFTI/OFTSS

PD14PD15PG2PG3PG4PG5PG6PG7PG8VSS_9VDD_9PC6

FSMC_D0/TIM4_CH3FSMC_D1/TIM4_CH4

FSMC_A12FSMC_A13FSMC_A14FSMC_A15FSMC_INT2

FSMC_INT3 /USART6_CK

USART6_RTS / ETH_PPS_OUT

37G26396115H15I/OFT

SPI2_MCK /

TIM8_CH1/SDIO_D6 /

USART6_TX / DCMI_D0/TIM3_CH1SPI3_MCK /

TIM8_CH2/SDIO_D7 /

USART6_RX / DCMI_D1/TIM3_CH2TIM8_CH3/SDIO_D0 /TIM3_CH3/ USART6_CK /

DCMI_D2I2S2_CKIN/ I2S3_CKIN/

MCO2 /

TIM8_CH4/SDIO_D1 / /I2C3_SDA / DCMI_D3 /

TIM3_CH4MCO1 / USART1_CK/ TIM1_CH1/ I2C3_SCL/

OTG_FS_SOFUSART1_TX/ TIM1_CH2 / I2C3_SMBA / DCMI_D0USART1_RX/ TIM1_CH3/ OTG_FS_ID/DCMI_D1USART1_CTS / CAN1_RX / TIM1_CH4 / OTG_FS_DM

OTG_FS_VBUS

38F26497116G15PC7I/OFTPC7

39F36598117G14PC8I/OFTPC8

40D16699118F14PC9I/OFTPC9

41E267100119F15PA8I/OFTPA8

42E368101120E1543D369102121D1544D270103122C15

PA9PA10PA11

I/OFTI/OFTI/OFT

PA9PA10PA11

Doc ID 15818 Rev 543/147

205 STM32F205xx207xx参考手册

Pinouts and pin descriptionTable 5.

WLCSP64+2

STM32F205xx, STM32F207xx

STM32F20x pin and ball definitions (continued)

I / O Level(2)

Pins

UFBGA176

Type(1)

LQFP100

LQFP144

LQFP176

Main function(3) (after reset)

LQFP64

Pin nameAlternate functions

Other functions

45C171104123B1546B272105124A1547C273106125F13-B174107126F12

PA12PA13VCAP_2VSS_2VDD_2PH13PH14PH15PI0PI1PI2PI3VSS_15VDD_15PA14

I/OFTI/OFTSSSI/OFTI/OFTI/OFTI/OFTI/OFTI/OFTI/OFTSSI/OFT

PA12JTMS-SWDIOVCAP_2VSS_2VDD_2PH13PH14PH15PI0PI1PI2PI3VSS_15VDD_15JTCK-SWCLKJTDI

USART1_RTS / CAN1_TX/ TIM1_ETR/ OTG_FS_DP

JTMS-SWDIO

48A875108127G13----------------------------128E12-129E13-130D13-131E14-132D14-133C14-134C13-135D9-136C9

TIM8_CH1N / CAN1_TXTIM8_CH2N / DCMI_D4TIM8_CH3N / DCMI_D11TIM5_CH4 / SPI2_NSS / I2S2_WS / DCMI_D13SPI2_SCK / I2S2_CK /

DCMI_D8TIM8_CH4 /SPI2_MISO /

DCMI_D9TIM8_ETR / SPI2_MOSI / I2S2_SD / DCMI_D10

49A176109137A14JTCK-SWCLKJTDI/ SPI3_NSS/

I2S3_WS/TIM2_CH1_ETR

/ SPI1_NSSSPI3_SCK / I2S3_CK / UART4_TX / SDIO_D2 / DCMI_D8 / USART3_TXUART4_RX/ SPI3_MISO /

SDIO_D3 /

DCMI_D4/USART3_RXUART5_TX/SDIO_CK / DCMI_D9 / SPI3_MOSI / I2S3_SD / USART3_CKFSMC_D2/CAN1_RXFSMC_D3 / CAN1_TX

50A277110138A13I/OFT

51B378111139B14PC10I/OFTPC10

52C379112140B13PC11I/OFTPC11

53A380113141A12----81114142B1282115143C12

PC12PD0PD1

I/OFTI/OFTI/OFT

PC12PD0PD1

44/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxTable 5.

WLCSP64+2

Pinouts and pin description

STM32F20x pin and ball definitions (continued)

I / O Level(2)

Pins

UFBGA176

Type(1)

LQFP100

LQFP144

LQFP176

Main function(3) (after reset)

LQFP64

Pin nameAlternate functions

Other functions

54C783116144D12----------------------84117145D1185118146D1086119147C11-120148D8-121149C887122150B1188123151A11-124152C10-125153B10-126154B9-127155B8

PD2PD3PD4PD5VSS_10VDD_10PD6PD7PG9PG10PG11PG12

I/OFTI/OFTI/OFTI/OFTSSI/OFTI/OFTI/OFTI/OFTI/OFTI/OFT

PD2PD3PD4PD5VSS_10VDD_10PD6PD7PG9PG10PG11PG12

TIM3_ETR/UART5_RXSDIO_CMD / DCMI_D11FSMC_CLK/USART2_CTSFSMC_NOE/USART2_RTSFSMC_NWE/USART2_TX

FSMC_NWAIT/USART2_R

XUSART2_CK/FSMC_NE1/F

SMC_NCE2USART6_RX /

FSMC_NE2/FSMC_NCE3

FSMC_NCE4_1/ FSMC_NE3FSMC_NCE4_2 / ETH_MII_TX_ENFSMC_NE4 / USART6_RTSFSMC_A24 / USART6_CTS

/ETH_MII_TXD0/ETH_RMII

_TXD0FSMC_A25 / USART6_TX/ETH_MII_TXD1/ETH_RMII

_TXD1

---128156A8PG13I/OFTPG13

----

----

-129157A7-130158D7-131159C7-132160B7

PG14VSS_11VDD_11PG15PB3

I/OFTSSI/OFT

PG14VSS_11VDD_11PG15

USART6_CTS / DCMI_D13JTDO/ TRACESWO/ SPI3_SCK / I2S3_CK / TIM2_CH2 / SPI1_SCKNJTRST/ SPI3_MISO / TIM3_CH1 / SPI1_MISO

55A489133161A10

JTDO/

I/OFT

TRACESWOI/OFT

NJTRST

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

56B490134162A9PB4

Doc ID 15818 Rev 545/147

205 STM32F205xx207xx参考手册

Pinouts and pin descriptionTable 5.

WLCSP64+2

STM32F205xx, STM32F207xx

STM32F20x pin and ball definitions (continued)

I / O Level(2)

Pins

UFBGA176

Type(1)

LQFP100

LQFP144

LQFP176

Main function(3) (after reset)

LQFP64

Pin nameAlternate functions

Other functions

57A591135163A6PB5I/OFTPB5

I2C1_SMBA/ CAN2_RX / OTG_HS_ULPI_D7 / / SPI1_MOSI/ SPI3_MOSI / DCMI_D10 / I2S3_SDI2C1_SCL/ TIM4_CH1 / CAN2_TX /OTG_FS_INTN / DCMI_D5/USART1_TXI2C1_SDA / FSMC_NL(8) /

DCMI_VSYNC / USART1_RX/ TIM4_CH2

VPP

TIM4_CH3/SDIO_D4/ TIM10_CH1 / DCMI_D6 /

OTG_FS_SCL/ ETH_MII_TXD3 / I2C1_SCL/ CAN1_RXSPI2_NSS/ I2S2_WS/ TIM4_CH4/ TIM11_CH1/ OTG_FS_SDA/ SDIO_D5 / DCMI_D7 / I2C1_SDA /

CAN1_TXTIM4_ETR / FSMC_NBL0 /

DCMI_D2FSMC_NBL1 / DCMI_D3

58B592136164B6PB6I/OFTPB6

59A693137165B560B694138166D6

PB7BOOT0

I/OFTI

PB7BOOT0

61B795139167A5PB8I/OFTPB8

62A796140168B4PB9I/OFTPB9

--

---

97141169A498142170A3

D5

----

PE0PE1VSSVSS_3RFU(9)VDD_3PI4PI5PI6PI7IRROFF

I/OFTI/OFTSS

PE0PE1VSSVSS_3VDD_3PI4PI5PI6PI7IRROFF

63D8--

99143171C6

64D9100144172C5---------C8

------173D4-174C4-175C3-176C2---

SI/OFTI/OFTI/OFTI/OFTI/O

TIM8_BKIN / DCMI_D5TIM8_CH1 / DCMI_VSYNCTIM8_CH2 / DCMI_D6TIM8_CH3 / DCMI_D7

1.I = input, O = output, S = supply, HiZ = high impedance.2.FT = 5 V tolerant.

3.Function availability depends on the chosen device.

46/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxPinouts and pin description

4.PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).

5.Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F20x and STM32F21x reference manual, available from the STMicroelectronics website: www.st.com.

6.FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).

7.If the device is delivered in an UFBGA176 package and if the REGOFF pin is set to VDD (Regulator in bypass mode), then PA0 is used as an internal Reset (active low).

8.FSMC_NL pin is also named FSMC_NADV on memory devices.

9.RFU = reserved for future use.

Doc ID 15818 Rev 547/147

205 STM32F205xx207xx参考手册

48/147Table 6.Alternate function mapping

AF0AF1AF2AF3AF4AF5AF6AF7AF8AF9AF10AF11AF12AF13

Port

SYSTIM1/2TIM3/4/5TIM8/9/10/11SPI3/I2S3USART1/2/3UART4/5/FSMC/SDIO/AF014AF15

I2C1/I2C2/I2C3SPI1/SPI2/I2S2CAN1/CAN2/

USART6TIM12/13/14ETHOTG_FSDCMI

PA0-WKUPTIM2_CH1

TIM2_ETR TIM 5_CH1TIM8_ETR USART2_CTS UART4_TX ETH_MII_CRS EVENTOUT

PA1ETH_MII _RX_CLK

ETH_RMII _REF_CLKEVENTOUT

PA2ETH_MDIOEVENTOUTPA3OTG_HS_ULPI_DETH EVENTOUTPA4SPI1_NSS SPI3_NSS

I2S3_WS USART2_CK OTG_HS_SOFPA5TIM2_CH1

TIM2_ETR EVENTOUT

PA6EVENTOUTPA7ETH_MII _RX_DV

ETH_RMII _CRS_DVEVENTOUT

PA8MCO1EVENTOUTPA9CMI_Doc ID 15818 Rev 5PA10TIM1_CH3 CMI_EVENTOUT

PA11TIM1_CH4 OTG_FS_MEVENTOUTPA12TIM1_ETR OTG_FS_PEVENTOUTPA13EVENTOUTPA14EVENTOUTPA15JTDI TIM 2_CH1

TIM 2_ETR SPI1_NSS SPI3_NSS

I2S3_WS EVENTOUT

PB0OTG_HS_ULPI_D_MII_RXDEVENTOUTPB1OTG_HS_ULPI_D_MII_RXDEVENTOUTPB2EVENTOUTPB3JTDO/

TRACESWOSPI3_SCK

I2S3_CK EVENTOUT

PB4SPI3_MISOEVENTOUTPB5SPI3_MOSI

I2S3_SD DDCMI_DEVENTOUT

PB6CMI_DEVENTOUTPB7EVENTOUTPB8_MII_TXDDSDIO_CMI_DEVENTOUTPB9I2C1_SDSPI2_NSS

I2S2_WS DDSDIO_CMI_DEVENTOUT

PB10I2S2_CK MII_RX_EREVENTOUT

PB11OTG_HS_ULPI_ETH _RMII_TX_ENOTG_HS_SPB12SPI2_NSS

I2S2_WS OTG_HS_ULPI_ETH _MII_TXD0

ETH _RMII_TXD0OTG_HS_IDEVENTOUT

PB13TIM1_CH1N SPI2_SCK

I2S2_CK OTG_HS_ULPI_ETH _MII_TXD1

ETH _RMII_TXD1PB14SPI2_MISOOTG_HS_EVENTOUTPinouts and pin descriptionSTM32F205xx, STM32F207xx

205 STM32F205xx207xx参考手册

Table 6.Alternate function mapping (continued)

AF0AF1AF2AF3AF4AF5AF6AF7AF8AF9AF10AF11AF12AF13

PortCAN1/CAN2/AF014AF15

SYSTIM1/2TIM3/4/5TIM8/9/10/11I2C1/I2C2/I2C3SPI1/SPI2/I2S2SPI3/I2S3USART1/2/3UART4/5/

USART6TIM12/13/14ETHFSMC/SDIO/

OTG_FSDCMI

PB15I2S2_SD EVENTOUT

PC0PC1ETH_MDCEVENTOUTPC2SPI2_MISOOTG_HS_ULPI_D_MII_TXDEVENTOUTPC3SPI2_MOSIETH _MII_TX_CLK

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

ETH _RMII_TX_CLK EVENTOUT

PC4ETH_MII_RXD0

ETH_RMII_RXD0EVENTOUT

PC5ETH _RMII_RXD1EVENTOUT

PC6SDIO_DCMI_EVENTOUTPC7SDIO_DCMI_EVENTOUTPC8IO_CMI_EVENTOUTPC9MCO2I2C3_SDI2S2_CKINDSIO_DCMI_EVENTOUTDoc ID 15818 Rev 5PC10SPI3_SCK

I2S3_CK DSIO_DDCMI_DEVENTOUT

PC11SPI3_MISODSIO_DDCMI_DEVENTOUTPC12SPI3_MOSI

I2S3_SD DSDCMI_DEVENTOUT

PC13

PC14-OSC32_IN

PC15-OSC32_OUT

PD0EVENTOUTPD1EVENTOUTPD2TIM3_ETR IO_CMCMI_EVENTOUTPD3USART2_CTS PD4USART2_RTS PD5USART2_TX PD6USART2_RX PD7USART2_CK PD8USART3_TX FSMC_PD9USART3_RX FSMC_PD10USART3_CK FSMC_PD11USART3_CTS PD12TIM4_CH1 USART3_RTS 49/147PD13TIM4_CH2 PD14TIM4_CH3 FSMC_STM32F205xx, STM32F207xxPinouts and pin description

205 STM32F205xx207xx参考手册

50/147Table 6.Alternate function mapping (continued)

AF0AF1AF2AF3AF4AF5AF6AF7AF8AF9AF10AF11AF12AF13

PortAF014AF15

SYSTIM1/2TIM3/4/5TIM8/9/10/11I2C1/I2C2/I2C3SPI1/SPI2/I2S2SPI3/I2S3USART1/2/3UART4/5/CAN1/CAN2/

USART6TIM12/13/14ETHFSMC/SDIO/

OTG_FSDCMI

PD15TIM4_CH4 FSMC_PE0TIM4_ETR CMI_DEVENTOUTPE1CMI_DEVENTOUTPE2TRACECLK ETH _MII_TXD3 FSMC_A23 EVENTOUTPE3TRACED0 PE4TRACED1 DCMI_EVENTOUTPE5TRACEDCMI_EVENTOUTPE6TRACEDCMI_EVENTOUT

PE7TIM1_ETR FSMC_PE8TIM1_CH1N FSMC_PE9TIM1_CH1 FSMC_PE10TIM1_CH2N FSMC_Doc ID 15818 Rev 5PE11TIM1_CH2 FSMC_PE12TIM1_CH3N FSMC_PE13TIM1_CH3 FSMC_PE14TIM1_CH4 FSMC_PE15TIM1_BKIN FSMC_PF0I2C2_SDA PF1I2C2_SCL PF2I2C2_SMBAPF3PF4PF5PF6TIM10_CH1 FSMC_NIORPF7TIM11_CH1 PF8EVENTOUTPF9EVENTOUTPF10PF11CMI_PF12PF13PF14PF15Pinouts and pin descriptionSTM32F205xx, STM32F207xx

205 STM32F205xx207xx参考手册

Table 6.Alternate function mapping (continued)

AF0AF1AF2AF3AF4AF5AF6AF7AF8AF9AF10AF11AF12AF13

Port

SYSTIM1/2TIM3/4/5TIM8/9/10/11SPI3/I2S3USART1/2/3UART4/5/FSMC/SDIO/AF014AF15

I2C1/I2C2/I2C3SPI1/SPI2/I2S2CAN1/CAN2/

USART6TIM12/13/14ETHOTG_FSDCMI

PG0PG1PG2PG3PG4PG5PG6PG7EVENTOUTPG8EVENTOUTPG9EVENTOUTPG10Doc ID 15818 Rev 5PG11ETH _MII_TX_EN

ETH _RMII_TX_ENPG12EVENTOUTPG13UART6_CTS ETH _MII_TXD0

ETH _RMII_TXD0PG14USART6_TX ETH _MII_TXD1

ETH _RMII_TXD1 PG15USART6_CTS CMI_PH0 - OSC_IN

PH1 - OSC_OUT

PH2ETH _MII_CRSEVENTOUTPH3ETH _MII_COL EVENTOUTPH4I2C2_SCL PH5I2C2_SDA EVENTOUTPH6I2C2_SMBA_MII_RXEVENTOUTPH7I2C3_SCL ETH _MII_RXD3 EVENTOUTPH8I2C3_SDA PH9I2C3_SMBACMI_EVENTOUTPH10TIM5_CH1TIM5_ETR CMI_PH11TIM5_CH2 CMI_PH12TIM5_CH3 CMI_PH13TIM8_CH1N CAN1_TXEVENTOUT51/147PH14TIM8_CH2N CMI_PH15TIM8_CH3N CMI_STM32F205xx, STM32F207xxPinouts and pin description

205 STM32F205xx207xx参考手册

52/147Table 6.Alternate function mapping (continued)

AF0AF1AF2AF3AF4AF5AF6AF7AF8AF9AF10AF11AF12AF13

Port

SYSTIM1/2TIM3/4/5TIM8/9/10/11SPI3/I2S3USART1/2/3UART4/5/CAN1/CAN2/FSMC/SDIO/AF014AF15

I2C1/I2C2/I2C3SPI1/SPI2/I2S2USART6TIM12/13/14ETHOTG_FSDCMI

PI0TIM5_CH4 I2S2_WS CMI_PI1SPI2_SCK

I2S2_CK CMI_PI2CMI_PI3TIM8_ETR SPI2_MOSI

I2S2_SD CMI_PI4TIM8_BKIN CMI_PI5TIM8_CH1 PI6TIM8_CH2 CMI_PI7TIM8_CH3 CMI_PI8

PI9CAN1_RXEVENTOUTPI10ETH _MII_RX_EREVENTOUT

Doc ID 15818 Rev 5PI11OTG_HS_ULPI_Pinouts and pin descriptionSTM32F205xx, STM32F207xx

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxMemory mapping

4 Memory mapping

The memory map is shown in Figure15.

205 STM32F205xx207xx参考手册

Doc ID 15818 Rev 553/147

205 STM32F205xx207xx参考手册

Electrical characteristicsSTM32F205xx, STM32F207xx5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to VSS.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst

conditions of ambient temperature, supply voltage and frequencies by tests in production on

100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by

the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics

are indicated in the table footnotes and are not tested in production. Based on

characterization, the minimum and maximum values refer to sample tests and represent the

mean value plus or minus three times the standard deviation (mean±3Σ).

5.1.2 Typical values

Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the

1.8V≤VDD≤3.6V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from

a standard diffusion lot over the full temperature range, where 95% of the devices have an

error less than or equal to the value indicated (mean±2Σ).

5.1.3 Typical curves

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

Unless otherwise specified, all typical curves are given only as design guidelines and are

not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure16.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure17.

205 STM32F205xx207xx参考手册

54/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxElectrical characteristics

5.1.6 Power supply scheme

205 STM32F205xx207xx参考手册

1.4.7μF capacitor must be connected to one of the VDD pin.

5.1.7 Current consumption measurement

205 STM32F205xx207xx参考手册

Doc ID 15818 Rev 555/147

205 STM32F205xx207xx参考手册

Electrical characteristicsSTM32F205xx, STM32F207xx

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Table7: Voltage characteristics, Table8: Current characteristics, and Table9: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.Table 7.

SymbolVDD–VSS

VIN|ΔVDDx||VSSX ? VSS|VESD(HBM)

Voltage characteristics

Ratings

External main supply voltage (including VDDA, VDD)(1)

Input voltage on five-volt tolerant pin(2)Input voltage on any other pin(3)

Variations between different VDD power pinsVariations between all the different ground pinsElectrostatic discharge voltage (human body model)

MinTBDVSS–0.3VSS–0.3

MaxTBDVDD+4.04.0TBDTBD

see Section5.3.13:

Absolute maximum ratings (electrical sensitivity)

mVVUnit

1.All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power

supply, in the permitted range.2.IINJ(PIN) must never be exceeded (see Table8: Current characteristics). This is implicitly insured if VIN

maximum is respected. If VIN maximum cannot be respected, the injection current must be limited

externally to the IINJ(PIN) value. A positive injection is induced by VIN> VINmax while a negative injection is induced by VIN < VSS. 3.Positive current injection is not possible on these I/Os. VIN maximum must be respected. Negative current

injection is possible and must not exceed IINJ(PIN).

Table 8.

SymbolIVDDIVSSIIO

(2)

Current characteristics

Ratings

Total current into VDD/VDDA power lines (source)(1)Total current out of VSS ground lines (sink)(1)Output current sunk by any I/O and control pinOutput current source by any I/Os and control pinInjected current on five-volt tolerant I/O(3)Injected current on any other pin(4)

Total injected current (sum of all I/O and control pins)(5)

Max.TBDTBDTBDTBD–5/+0±5TBD

mAUnit

IINJ(PIN)

ΣIINJ(PIN)(4)

1.All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power

supply, in the permitted range.2.Negative injection disturbs the analog performance of the device. See note in Section5.3.18: 12-bit ADC

characteristics.3.Positive injection is not possible on these I/Os. VIN maximum must always be respected. IINJ(PIN) must

never be exceeded. A negative injection is induced by VIN<VSS.4.IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum

cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS.

56/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxElectrical characteristics

5.When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the

positive and negative injected currents (instantaneous values). These results are based on characterization with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.

Table 9.

Thermal characteristics

Ratings

Storage temperature rangeMaximum junction temperature

Value–40 to +125

125

Unit°C°C

SymbolTSTGTJ

5.3 Operating conditions

5.3.1

General operating conditions

Table 10.

SymbolfHCLKfPCLK1fPCLK2VDD

General operating conditions

Parameter

Internal AHB clock frequencyInternal APB1 clock frequencyInternal APB2 clock frequencyStandard operating voltageAnalog operating voltage

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

(ADC limited to 1 M samples)Analog operating voltage(ADC limited to 2 M samples)Backup operating voltage

LQFP64WLCSP66

Power dissipation at TA = 85°C LQFP100for suffix 6 or TA = 105°C for

LQFP144suffix 7(4)

LQFP176UFBGA176

Ambient temperature for 6

suffix version

Maximum power dissipation Low power dissipation

(5)

ConditionsMin0 0 0 1.8(1)

Max12030603.63.6

Unit

MHz

V

VDDA(2)

Must be the same potential as VDD(3)

1.8(1)2.41.65

V

3.63.6444392434500526513

–40

85

°CmWV

VBAT

PD

TA

Ambient temperature for 7 suffix version

TJ

Junction temperature range

–40

105

Maximum power dissipation Low power dissipation(5)6 suffix version7 suffix version

–40 –40

105125

°C

°C

1.This value is reduced to 1.65 V for STM32F20x in WLCSP package assuming IRROFF is set to VDD.2.When the ADC is used, refer to Table59: ADC characteristics.

3.It is recommended to power VDD and VDDA from the same source. A maximum difference of 300mV

between VDD and VDDA can be tolerated during power-up and operation.

Doc ID 15818 Rev 557/147

205 STM32F205xx207xx参考手册

Electrical characteristicsSTM32F205xx, STM32F207xx

4.If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.

5.In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.

Table 11.

Operating power supply range

Limitations depending on the operating power supply range

Maximum Flash memory access frequency (fFlashmax)16MHz with no Flash memory wait

state18MHz with no Flash memory wait

state

Number of wait

states at maximum CPU frequency (fCPUmax=120MHz)(1)

FSMC controller operation

Possible Flash memory operations

ADC operation

I/O operation

VDD =1.8 to 2.1V(2)

Conversion time up to 1Msps

7(3)

–Degraded speed

performanceup to 30MHz–No I/O

compensation

–Degraded speed

performanceup to 30MHz–No I/O

compensation

–Degraded speed

performance

up to 48MHz

–I/O

compensation works

8-bit erase and program operations only

VDD = 2.1 to 2.4V

Conversion time up to 1Msps

6

(3)

16-bit erase and program operations

VDD = 2.4 to 2.7V

Conversion time up to 2Msps

24MHz with no Flash memory wait

state

4

(3)

16-bit erase and program operations

VDD = 2.7 to 3.6V(4)

Conversion time up to 2Msps

30MHz with no Flash memory wait

state

3(3)

–up to 60MHz

–Full-speed

when VDD =

operation

3.0 to 3.6V32-bit erase

and program –I/O

–up to

operationscompensation

48MHz

works

when VDD = 2.7 to 3.0V

1.The number of wait states can be reduced by reducing the CPU frequency (see Figure20).

2.This voltage range is reduced to 1.65 to 2.1V for devices in WLCSP package assuming IRROFF is set to VDD.

3.Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the

execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.4.The voltage range for ULPI USB high-speed, Ethernet MII and Ethernet RMII is 3.0 to 3.6V.

58/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxElectrical characteristics

5.3.2 Operating conditions at power-up / power-down

(regulator not bypassed)

Subject to general operating conditions for TA.Table 12.

SymboltVDD

Operating conditions at power-up / power-down (regulator not bypassed)

Parameter

VDD rise time rateVDD fall time rate

MinTBDTBD

Max

Unitμs/V

∞∞

Doc ID 15818 Rev 559/147

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

Electrical characteristicsSTM32F205xx, STM32F207xx

5.3.3

Operating conditions at power-up / power-down in regulatorbypass mode

Subject to general operating conditions for TA.Table 13.

SymboltVDD

Operating conditions at power-up / power-down in regulator bypass mode

Parameter

VDD rise time rateVDD fall time rate

Conditions

Power-upPower-down

MinTBDTBDTBDTBD

Max

Unit

∞∞∞∞

μs/V

tVCAP

VCAP_1 and VCAP_2 rise

Power-up

time rate

VCAP_1 and VCAP_2 fall time rate

Power-down

5.3.4 Embedded reset and power control block characteristics

The parameters given in Table14 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table10.Table 14.

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

Symbol

Embedded reset and power control block characteristics

Parameter

Conditions

PLS[2:0]=000 (rising edge)PLS[2:0]=000 (falling edge)PLS[2:0]=001 (rising edge)PLS[2:0]=001 (falling edge)PLS[2:0]=010 (rising edge)PLS[2:0]=010 (falling edge)PLS[2:0]=011 (rising edge)

MinTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBD

Typ TBD2.00TBD2.20TBD2.30TBD2.50TBD2.70TBD2.80TBD2.90TBD3.00100

MaxTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBD

UnitVVVVVVVVVVVVVVVVmV

VPVD

Programmable voltage PLS[2:0]=011 (falling edge)detector level selectionPLS[2:0]=100 (rising edge)

PLS[2:0]=100 (falling edge)PLS[2:0]=101 (rising edge)PLS[2:0]=101 (falling edge)PLS[2:0]=110 (rising edge)PLS[2:0]=110 (falling edge)PLS[2:0]=111 (rising edge)PLS[2:0]=111 (falling edge)

VPVDhyst(2)

PVD hysteresis

60/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xx

Table 14.

SymbolVPOR/PDR

Electrical characteristics

Embedded reset and power control block characteristics (continued)

Parameter

Conditions

MinTBD(1)TBDTBDTBDTBDTBDTBD

Typ 1.701.742.20TBD2.50TBD2.8040

TBD-TBD-TBD200MaxTBDTBDTBDTBDTBDTBDTBD

UnitVVVVVVVmVmsmA

Power-on/power-down Falling edgereset thresholdRising edgeBrownout level 1 threshold Brownout level 2 thresholdBrownout level 3 thresholdPDR hysteresis

Falling edgeRising edgeFalling edgeRising edgeFalling edge

VBOR1

VBOR2VBOR3VPDRhyst(2)

TRSTTEMPO(2)Reset temporization

IRUSH

InRush current on voltage regulator power-on

1.The product behavior is guaranteed by design down to the minimum VPOR/PDR value.2.Guaranteed by design, not tested in production.

5.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in Figure19: Current consumption measurement scheme.

All run mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code.

Doc ID 15818 Rev 561/147

205 STM32F205xx207xx参考手册

Electrical characteristicsSTM32F205xx, STM32F207xx

Typical and maximum current consumption

The MCU is placed under the following conditions:

●●●

All I/O pins are in input mode with a static value at VDD or VSS (no load).All peripherals are disabled except if it is explicitly mentioned.

The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 30MHz, 1 wait state from 30 to 60MHz, 2 wait states from 60 to 90MHz and 3 wait states from 90 to 120MHz).

Prefetch and Cache ON (Reminder: this bit must be set before clock setting and bus prescaling).

When the peripherals are enabled fPCLK1 = fHCLK/4, fPCLK2 = fHCLK/2, fADCCLK = fPCLK2/4

The maximum values are obtained for VDD = 3.6V and maximum ambient temperature (TA), and the typical values for TA= 25°C and VDD = 3.3V unless otherwise specified.

●●●

Table 15.

Typical and maximum current consumption in Run mode, code with data processingrunning from Flash

Typical

Max(1)

Unit

TA = 25°CTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBD

TA = 85°CTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBD

TA = 105°C

TBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBD

mA

Parameter

Conditions

fHCLK120 MHz90 MHz

External clock(2), all 60 MHzperipherals enabled30 MHz

26 MHz

Symbol

IDD

Supply current in Run mode

16 MHz120 MHz90 MHz

External clock(2), all 60 MHzperipherals disabled30 MHz

26 MHz16 MHz

1.Based on characterization, not tested in production.2.External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.

62/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxTable 16.

Electrical characteristics

Typical and maximum current consumption in Run mode, code with data processing running from RAM

Typ

Max(1)

Unit

TA = 25°C49.5382614.5TBDTBD221712.57TBDTBD

TA = 85°CTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBD

TA = 105°C

TBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBD

mA

Parameter

Conditions

fHCLK120 MHz90 MHz

60 MHzExternal clock(2),

all peripherals enabled(3)30 MHz

26 MHz

Supply current in Run mode

External clock(2), all peripherals disabled

Symbol

IDD

16 MHz120 MHz90 MHz60 MHz30 MHz26 MHz16 MHz

1.Based on characterization, tested in production at VDD max, fHCLK max.2.External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

3.Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only

while the ADC is on (ADON bit is set in the ADC_CR2 register).

Table 17.

Symbol

Typical and maximum current consumption in Sleep mode

Typ

Parameter

Conditions

fHCLK120 MHz90 MHz

60 MHzExternal clock(2),

(3)all peripherals enabled30 MHz

26 MHz16 MHz120 MHz90 MHz

External clock(2), all

peripherals disabled

60 MHz30 MHz26 MHz16 MHz

Max(1)

TA = 105°CTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBD

mAUnit

TA = 25°CTA = 85°C37.529.520.514.5TBDTBD8.06.55.03.5TBDTBD

TBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBD

IDD

Supply current in Sleep mode

1.Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.2.External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.

Doc ID 15818 Rev 563/147

205 STM32F205xx207xx参考手册

Electrical characteristicsSTM32F205xx, STM32F207xx

3.Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only

while the ADC is on (ADON bit is set in the ADC_CR2 register).

Table 18.

Symbol

Typical and maximum current consumptions in Stop mode

Typ(1)

Parameter

Conditions

Max

VDD/VBATVDD/VBATVDD/VBATTA = TA = Unit= 1.8V= 2.4V= 3.3V85°C105°C

Flash in Stop mode, low-speed and high-speed internal RC oscillators

Supply current and high-speed oscillator OFF (no in Stop mode independent watchdog)with main Flash in Deep power down mode, regulator in low-speed and high-speed internal Run modeRC oscillators and high-speed

IDD_STOP

oscillator OFF (no independent

watchdog)

Flash in Stop mode, low-speed and high-speed internal RC oscillators

Supply current and high-speed oscillator OFF (no in Stop mode independent watchdog)with main

regulator in Flash in Deep power down mode,

low-speed and high-speed internal Low Power

RC oscillators and high-speed mode

oscillator OFF (no independent watchdog)

350TBDTBD

300TBDTBD

μA

200

150

1.Typical values are measured at TA = 25 °C.

Table 19.

Symbol

Typical and maximum current consumptions in Standby mode

Typ(1)

Parameter

Conditions

Max

VDD/VBATVDD/VBATVDD/VBATTA = TA = Unit= 1.8V= 2.4V= 3.3V85°C105°C

43.33.22.5

TBDTBDTBDTBDTBD(2)TBD(2)TBD(2)TBD(2)

μA

Backup SRAM ON, RTC ON

Supply current Backup SRAM OFF, RTC ON

IDD_STBYin Standby

Backup SRAM ON, RTC OFFmode

Backup SRAM OFF, RTC OFF

1.Typical values are measured at TA = 25 °C.2.Based on characterization, not tested in production.

64/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxTable 20.

Symbol

Electrical characteristics

Typical and maximum current consumptions in VBAT mode

Typ(1)

Parameter

Conditions

Max

VDD/VBATVDD/VBATVDD/VBATTA = TA = Unit= 1.8V= 2.4V= 3.3V85°C105°C

0.81.500.7

TBD(2)TBD(2)TBDTBDTBDTBDTBDTBDμA

Backup

IDD_VBATdomain supply Backup SRAM ON, RTC ON

current Backup SRAM OFF, RTC OFF

Backup SRAM ON, RTC OFF

1.Typical values are measured at TA = 25 °C.2.Based on characterization, not tested in production.

Backup SRAM OFF, low-speed

oscillator and RTC ON

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in Table21. The MCU is placed under the following conditions:

●●●

all I/O pins are in input mode with a static value at VDD or VSS (no load)all peripherals are disabled unless otherwise mentioned

the given value is calculated by measuring the current consumption––

with all peripherals clocked off

with one peripheral clocked on (with only the clock applied)

ambient operating temperature and VDD supply voltage conditions summarized in Table7.

Peripheral current consumption

Peripheral(1)

GPIO AGPIO BGPIO CGPIO DGPIO E

Typical consumption at 25 °C

TBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBD

mAUnit

Table 21.

AHB1GPIO FGPIO GGPIO HGPIO IOTG_HSETH_MACOTG_FS

AHB2DCMIRNG

Doc ID 15818 Rev 565/147

205 STM32F205xx207xx参考手册

Electrical characteristics

Table 21.

Peripheral current consumption (continued)

Peripheral(1)

TIM2TIM3TIM4TIM5TIM6TIM7TIM12TIM13TIM14USART2

APB1

USART3UART4UART5I2C1I2C2I2C3SPI2SPI3CAN1CAN2DACSDIOTIM1TIM8TIM9TIM10

APB2

TIM11ADC1(2)ADC2(2)ADC3SPI1USART1USART6

STM32F205xx, STM32F207xx

Typical consumption at 25 °C

TBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBD

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

Unit

mA

mA

1.fHCLK = 120 MHz, fAPB1 = fHCLK/4, fAPB2 = fHCLK/2, default prescaler value for each peripheral.

2.Specific conditions for ADC: fHCLK = 120MHz, fAPB1 = fHCLK/4, fAPB2 = fHCLK/2, fADCCLK = fAPB2/2, ADON

bit in the ADC_CR2 register is set to 1.

66/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxElectrical characteristics

5.3.6 External clock source characteristics

High-speed external user clock generated from an external source

The characteristics given in Table22 result from tests performed using an high-speed

external clock source, and under ambient temperature and supply voltage conditions summarized in Table10.Table 22.

SymbolfHSE_extVHSEHVHSELtw(HSE)tw(HSE)tr(HSE)tf(HSE)Cin(HSE)

High-speed external user clock characteristics

Parameter

External user clock source frequency(1)

OSC_IN input pin high level voltageOSC_IN input pin low level voltageOSC_IN high or low time(1)OSC_IN rise or fall time(1)OSC_IN input capacitance(1)

45

VSS≤VIN≤VDD

5

55±1

Conditions

Min10.7VDDVSS16

ns

20

pF%μA

Typ8

Max50VDD0.3VDD

UnitMHzV

DuCy(HSE)Duty cycle

IL

OSC_IN Input leakage current

1.Guaranteed by design, not tested in production.

Low-speed external user clock generated from an external source

The characteristics given in Table23 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table10.Table 23.

SymbolfLSE_extVLSEHVLSELtw(LSE)tw(LSE)tr(LSE)tf(LSE)Cin(LSE)

Low-speed external user clock characteristics

Parameter

User External clock source frequency(1)

OSC32_IN input pin high level voltage

OSC32_IN input pin low level voltage

OSC32_IN high or low time(1)OSC32_IN rise or fall time(1)OSC32_IN input capacitance(1)

30

5

70±1

0.7VDDVSS450

ns

50

pF%μA

Conditions

Min

Typ32.768

Max1000VDD

V

0.3VDD

UnitkHz

DuCy(LSE)Duty cycle

IL

OSC32_IN Input leakage current VSS≤VIN≤VDD

1.Guaranteed by design, not tested in production.

Doc ID 15818 Rev 567/147

205 STM32F205xx207xx参考手册

Electrical characteristicsSTM32F205xx, STM32F207xx

205 STM32F205xx207xx参考手册

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic

resonator oscillator. All the information given in this paragraph are based on characterization

results obtained with typical external components specified in Table24. In the application,

the resonator and the load capacitors have to be placed as close as possible to the oscillator

pins in order to minimize output distortion and startup stabilization time. Refer to the crystal

resonator manufacturer for more details on the resonator characteristics (frequency,

package, accuracy).

68/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xx

Table 24.

SymbolfOSC_INRFC

Electrical characteristics

HSE 4-26 MHz oscillator characteristics(1) (2)

Parameter

Oscillator frequencyFeedback resistor

Recommended load capacitance versus equivalent serial

resistance of the crystal (RS)(3)HSE driving currentOscillator transconductance

RS = 30 ΩVDD = 3.3 V, VIN=VSS

with 30 pF load

Startup VDD is stabilized

25

2

Conditions

Min4

20030Typ

Max26

UnitMHzkΩ pF

i2gm

1mAmA/Vms

tSU(HSE(4)Startup time

2.Based on characterization, not tested in production.

1.Resonator characteristics given by the crystal/ceramic resonator manufacturer.

3.The relatively low value of the RF resistor offers a good protection against issues resulting from use in a

humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.4.tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz

oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5pF to 25pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure23). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com.

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

205 STM32F205xx207xx参考手册

1.REXT value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table25. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Doc ID 15818 Rev 569/147

205 STM32F205xx207xx参考手册

Electrical characteristics

Table 25.

SymbolRFC

(2)

STM32F205xx, STM32F207xx

LSE oscillator characteristics (fLSE = 32.768 kHz) (1)

Parameter

Feedback resistor

Recommended load capacitance versus equivalent serial

resistance of the crystal (RS)(3)LSE driving current

Oscillator Transconductance

VDD is stabilizedRS = 30 kΩVDD = 3.3 V, VIN = VSS

5

3

Conditions

Min

Typ5

151.4Max

UnitMΩ pFμAμA/Vs

I2gm

tSU(LSE)(4)startup time

1.Based on characterization, not tested in production.

2.Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator

design guide for ST microcontrollers”.3.The oscillator selection can be optimized in terms of supply current using an high quality resonator with

small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details4.tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized

32.768kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

Note:

For CL1 and CL2 it is recommended to use high-quality external ceramic capacitors in the 5pF to 15pF range selected to match the requirements of the crystal or resonator (see Figure24). CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2.

Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.

To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL≤ 7 pF. Never use a resonator with a load capacitance of 12.5 pF.

Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF, then CL1 = CL2 = 8 pF.

205 STM32F205xx207xx参考手册

Caution:

70/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxElectrical characteristics

5.3.7 Internal clock source characteristics

The parameters given in Table26 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table10.

High-speed internal (HSI) RC oscillator

Table 26.

SymbolfHSI

HSI oscillator characteristics (1)

Parameter

Conditions

Min

Typ

Max

Unit

User-trimmed with the RCC_CR register(2)

TBD

TBDTBDTBDTBDTBD

80

TBDTBDTBDTBDTBDTBD

%%%%%μsμA

ACCHSI

Accuracy of the HSI oscillatorFactory-calibrated

TA = –40 to 105°CTA = –10 to 85°CTA = 0 to 70°CTA = 25°C

tsu(HSI)IDD(HSI)

HSI oscillator startup timeHSI oscillator

power consumption

1.VDD = 3.3V, TA = –40 to 105°C unless otherwise specified.

2.Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from the

ST website www.st.com.

Low-speed internal (LSI) RC oscillator

Table 27.

SymbolfLSI(2)tsu(LSI)(3)IDD(LSI)(3)

Frequency

LSI oscillator startup timeLSI oscillator power consumption

LSI oscillator characteristics (1)

Parameter

Min30

Typ32850.65

Max60TBDTBD

UnitkHz μsμA

1.VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.2.Based on characterization, not tested in production.3.Guaranteed by design, not tested in production.

5.3.8 Wakeup time from low-power mode

The wakeup times given in Table28 is measured on a wakeup phase with a 16MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

●●

Stop or Standby mode: the clock source is the RC oscillator

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table10.

Doc ID 15818 Rev 571/147

205 STM32F205xx207xx参考手册

Electrical characteristics

Table 28.

STM32F205xx, STM32F207xx

Low-power mode wakeup timings

Parameter

Wakeup from Sleep mode

Wakeup from Stop mode (regulator in run mode)

Typ1915110200

μsμsUnitμs

SymboltWUSLEEP(1)

tWUSTOP(1)

Wakeup from Stop mode (regulator in low power mode)Wakeup from Stop mode (regulator in low power mode and Flash memory in Deep power down mode)Wakeup from Standby mode

tWUSTDBY(1)

1.The wakeup times are measured from the wakeup event to the point in which the user application code

reads the first instruction.

5.3.9 PLL characteristics

The parameters given in Table29 and Table30 are derived from tests performed under

temperature and VDD supply voltage conditions summarized in Table10.

Table 29.

SymbolfPLL_INfPLL_OUTfPLL48_OUTfVCO_OUTtLOCKJitterIDD(PLL)IDDA(PLL)

Main PLL characteristics

Parameter

PLL input clock(2)

PLL multiplier output clock48 MHz PLL multiplier output clockPLL VCO outputPLL lock timeCycle-to-cycle jitter

PLL power consumption on VDDPLL power consumption on VDDA

System clock 120MHzVCO freq = 192MHzVCO freq = 432MHzVCO freq = 192MHzVCO freq = 432MHz

TBCTBC192

Conditions

Min(1)Typ(1)0.9524

1

Max(1)2.0012048432350300TBCTBC

UnitMHzMHzMHzMHzμspsmAmA

1.Based on characterization, not tested in production.

2.Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared

between PLL and PLLI2S.

Table 30.

SymbolfPLLI2S_INfPLLI2S_OUTfVCO_OUTtLOCKJitter

PLLI2S (audio PLL) characteristics

Parameter

PLLI2S input clock(2)

PLLI2S multiplier output clockPLLI2S VCO outputPLLI2S lock timeCycle-to-cycle jitter

System clock 120MHz

192

Conditions

Min(1)Typ(1)0.95

1

Max(1)1.05216432350300

UnitMHzMHzMHzμsps

72/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxTable 30.

Symbol

Electrical characteristics

PLLI2S (audio PLL) characteristics (continued)

Parameter

Conditions

Cycle to cycle at 12,343KHz

on 48KHz periodN=432, P=4, R=5Average frequency of 12,343KHz

N=432, P=4, R=5on 256 samplesCycle to cycle at 48KHzon 1000 samplesCycle to cycle at 50MHzon 1000 samplesCycle to cycle at 1MHzon 1000 samplesVCO freq = 192MHzVCO freq = 432MHzVCO freq = 192MHzVCO freq = 432MHz

Min(1)Typ(1)

Max(1)

Unit

JitterMaster I2S clock jitterTBCTBCps

JitterMaster I2S clock jitterTBCTBCps

JitterJitterJitterIDD(PLLI2S)IDDA(PLLI2S)

WS I2S clock jitter

Main Clock Output for EthernetBit Time CAN Jitter

PLLI2S power consumption on VDD

PLLI2S power consumption on VDDA

TBCTBCTBCTBCTBC

TBCTBCTBCTBCTBC

pspspsmAmA

1.Based on characterization, not tested in production.

2.Take care of using the appropriate division factor M to have the specified PLL input clock values.

5.3.10 PLL spread spectrum clock generation (SSCG) characteristics

The spread spectrum clock generation (SSCG) feature is only available on the main PLL. Table 31.

SSCG parameters constraint

ParameterModulation frequencyPeak modulation depth

0.5Min

Typ

Max102215?1

UnitKHzdecdec

SymbolfModmd

MODEPER * INCSTEP

Equation 1

The frequency modulation period (MODEPER) is given by the equation below:

MODEPER=round[fPLL_IN?(4×fMod)]

Equation 2

Doc ID 15818 Rev 573/147

205 STM32F205xx207xx参考手册

Electrical characteristicsSTM32F205xx, STM32F207xxEquation 2 allows to calculate the increment step (INCSTEP):

INCSTEP=round[((215–1)×md×fVCO_OUT)?(100×5×MODEPER)]

An amplitude quantization error may be generated because the linear modulation profile is

obtained by taking the quantized values (rounded to the nearest integer) of MODPER and

INCSTEP. As a result, the achieved modulation depth is quantized. The percentage

quantized modulation depth is given by the following formula:

mdquantized%=(MODEPER×INCSTEP×100×5)?((215–1)×fVCO_OUT)

Figure25 and Figure26 show the main PLL output clock waveforms in center spread and

down spread modes, where:

F0 is fPLL_OUT nominal.

Tmode is the modulation period.

md is the modulation depth.

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

74/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxElectrical characteristics

5.3.11 Memory characteristics

Flash memory

The characteristics are given at TA = –40 to 105 °C unless otherwise specified.Table 32.

Symbol

Flash memory characteristics

Parameter

Conditions

Read mode

fHCLK = 120MHz with 3 wait states, VDD = 3.3 V

Min

MaxTBD

UnitmA

IDD

Supply current

Write / Erase modes

fHCLK = 120MHz, VDD = 3.3VPower-down mode / Halt,VDD = 3.0 to 3.6 V

TBDTBD

mAμA

Table 33.

Symboltprog

Flash memory programming

Parameter

Word programming time

Conditions

Min(1)

Typ12400

TA = –40 to +105 °C

7001

TBD

32-bit program operation

2.72.11.8

TBD3.63.63.6Max(1)Unit100

μsmsmssmsVVV

tERASE16KBSector (16 KB) erase timetERASE64KBSector (64 KB) erase timetERASE128KBSector (128 KB) erase time

tME

Mass erase time

Vprog

Programming voltage16-bit program operation8-bit program operation

1.Guaranteed by design, not tested in production.

Table 34.

SymboltprogtERASE16KBtERASE64KB

Flash memory programming with VPP

Parameter

Double word programmingSector (16 KB) erase timeSector (64 KB) erase time

Conditions

Min(1)

Typ7TBDTBDTBDTBD

TA = 0 to +40°C

2.7710

13.69

VVmAhour

Max(1)60

Unitμs

tERASE128KBSector (128 KB) erase time

tMEVprogVPPIPPtVPP(2)

Mass erase timeProgramming voltageVPP voltage rangeMinimum current sunk on the VPP pin

Cumulative time during which VPP is applied

Doc ID 15818 Rev 575/147

205 STM32F205xx207xx参考手册

Electrical characteristicsSTM32F205xx, STM32F207xx1.Guaranteed by design, not tested in production.

2.VPP should only be connected during programming/erasing.

Table 35.

SymbolFlash memory endurance and data retentionValueParameter Conditions

Min

TA = –40 to +85 °C (6 suffix versions)

TA = –40 to +105 °C (7 suffix versions)

1 kcycle(2) at TA = 85 °C

1 kcycle(2) at TA = 105 °C

10 kcycles(2) at TA = 55 °C(1)UnitTypMaxkcyclesNENDEndurance10301020tRETData retentionYears

1.Based on characterization, not tested in production.

2.Cycling performed over the whole temperature range.

5.3.12 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the

device is stressed by two electromagnetic events until a failure occurs. The failure is

indicated by the LEDs:

●Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS

through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant

with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in Table36. They are based on the EMS levels and classes

defined in application note AN1709.

Table 36.

Symbol EMS characteristicsParameterConditionsLevel/

Class

2BVFESDV= 3.3 V, LQFP100, TA = +25°C, Voltage limits to be applied on any I/O pin to DD fHCLK = 75 MHz, conforms to induce a functional disturbanceIEC61000-4-2

Fast transient voltage burst limits to be

applied through 100 pF on VDD and VSS pins to induce a functional disturbanceVDD = 3.3 V, LQFP100, TA = +25°C, fHCLK = 75 MHz, conforms to

IEC61000-4-2VEFTB4A

76/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxElectrical characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.Software recommendations

The software flowchart must include the management of runaway conditions such as:

●●●

Corrupted program counterUnexpected reset

Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Table 37.

Symbol

EMI characteristics

Parameter

Conditions

Monitoredfrequency band0.1 to 30 MHz

Max vs. [fHSE/fHCLK]8/48 MHz

926254

8/72 MHz

913314

-dBμVUnit

SEMI

Peak level

VDD = 3.3V, TA = 25°C,LQFP100 package

compliant with IEC61967-2

30 to 130 MHz130 MHz to 1GHzSAE EMI Level

5.3.13 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Doc ID 15818 Rev 577/147

205 STM32F205xx207xx参考手册

Electrical characteristicsTable 38.

SymbolVESD(HBM)VESD(CDM)

STM32F205xx, STM32F207xx

ESD absolute maximum ratings

Ratings

Electrostatic discharge voltage (human body model)

Electrostatic discharge voltage (charge device model)

Conditions

TA = +25 °C conforming to JESD22-A114

TA = +25 °C conforming to JESD22-C101

ClassMaximum value(1)2II

2000

V

500

Unit

1.Based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

●●

A supply overvoltage is applied to each power supply pin

A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 39.

SymbolLU

Electrical sensitivities

Parameter

Static latch-up class

Conditions

TA = +105 °C conforming to JESD78A

ClassII level A

5.3.14 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in Table40 are derived from tests

performed under the conditions summarized in Table10. All I/Os are CMOS and TTL compliant.

Table 40.

SymbolVILVIHVIL

I/O static characteristics

Parameter

ConditionsTTL ports2.7V≤VDD≤3.6VCMOS ports 1.65V≤VDD≤3.6VCMOS ports 1.65V≤VDD≤3.6VCMOS ports 2.0V≤VDD≤3.6V

2005% VDD(3)

MinVSS–0.3

22–0.3

Typ

Max0.8VDD+0.35.5V0.3 VDDVDD+0.3

0.7 VDD

5.255.5

mVmVVUnit

Input low level voltage

Standard I/O input high level voltageFT(1) I/O input high level voltageInput low level voltage

Standard I/O high level voltage

VIH

FT(1) I/O input high level voltage

Vhys

Standard IO Schmitt trigger voltage hysteresis(2)

IO FT Schmitt trigger voltage hysteresis(2)

78/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxTable 40.

SymbolIlkg

Electrical characteristics

I/O static characteristics (continued)

Parameter

ConditionsVSS≤VIN≤VDD

VIN= 5 VVIN = VSS

308

VIN = VDD

308

401140115

Min

Typ

Max±1350155015

pFkΩUnitμA

Standard I/O input leakage current (4)FT I/O input leakage

(4)

RPU

All pins except for

Weak pull-up equivalent PA10 and PB12resistor(5)

PA10 and PB12Weak pull-down equivalent resistor(5)I/O pin capacitance

All pins except for PA10 and PB12PA10 and PB12

RPDCIO(6)

1.FT = Five-volt tolerant.

2.Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.3.With a minimum of 100 mV.

4.Leakage could be higher than max. if negative current is injected on adjacent pins.

5.Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This

MOS/NMOS contribution to the series resistance is minimum (~10% order).6.Guaranteed by design, not tested in production.

All I/Os are CMOS and TTL compliant (no software configuration required), their characteristics consider the most strict CMOS-technology or TTL parameters:

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

For VIH:

– ifVDD is in the [2.00 V - 3.08 V] range: CMOS characteristics but TTL included– ifVDD is in the [3.08 V - 3.60 V] range: TTL characteristics but CMOS included

For VIL:

– ifVDD is in the [2.00 V - 2.28 V] range: TTL characteristics but CMOS included– ifVDD is in the [2.28 V - 3.60 V] range: CMOS characteristics but TTL included

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to +/-8mA, and sink +20mA (with a relaxed VOL).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section5.2:

The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run

consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table8).

The sum of the currents sunk by all the I/Os on VSS plus the maximum Run

consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table8).

Output voltage levels

Unless otherwise specified, the parameters given in Table41 are derived from tests

performed under ambient temperature and VDD supply voltage conditions summarized in Table10. All I/Os are CMOS and TTL compliant.

Doc ID 15818 Rev 579/147

205 STM32F205xx207xx参考手册

Electrical characteristics

Table 41.

SymbolVOL(2)VOH(3)VOL (2)VOH (3)VOL(2)(4)VOH(3)(4)VOL(2)(4)VOH(3)(4)

STM32F205xx, STM32F207xx

Output voltage characteristics(1)

Parameter

Output low level voltage for an I/O pin when 8 pins are sunk at same timeOutput high level voltage for an I/O pin when 8 pins are sourced at same timeOutput low level voltage for an I/O pin when 8 pins are sunk at same timeOutput high level voltage for an I/O pin when 8 pins are sourced at same timeOutput low level voltage for an I/O pin when 8 pins are sunk at same timeOutput high level voltage for an I/O pin when 8 pins are sourced at same timeOutput low level voltage for an I/O pin when 8 pins are sunk at same time Output high level voltage for an I/O pin when 8 pins are sourced at same time

ConditionsTTL portIIO = +8 mA2.7 V < VDD < 3.6VCMOS portIIO =+ 8mA2.7 V < VDD < 3.6V

Min

Max0.4

V

VDD–0.4

0.4

V

2.4

1.3

V

VDD–1.3

0.4

V

VDD–0.4

Unit

IIO = +20 mA2.7 V < VDD < 3.6V

IIO = +6 mA2 V < VDD < 2.7 V

1.PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited

amount of current (3mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).2.The IIO current sunk by the device must always respect the absolute maximum rating specified in Table8

and the sum of IIO (I/O ports and control pins) must not exceed IVSS.3.The IIO current sourced by the device must always respect the absolute maximum rating specified in

Table8 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.4.Based on characterization data, not tested in production.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in Figure27 and Table42, respectively.

Unless otherwise specified, the parameters given in Table42 are derived from tests

performed under the ambient temperature and VDD supply voltage conditions summarized in Table10.

Table 42.

OSPEEDRy[1:0] bit value(1)

I/O AC characteristics(1)

SymbolParameterConditions

CL = 50pF, VDD = 1.8 V to 3.6V

CL = 50pF, VDD = 1.8 V to 3.6V

MinTypMaxUnit

fmax(IO)outMaximum frequency(2)

00

tf(IO)outtr(IO)out

Output high to low level fall time

Output low to high level rise time

2TBD(3)TBD

(3)

MHz

ns

80/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxTable 42.

OSPEEDRy[1:0] bit value(1)

Electrical characteristics

I/O AC characteristics(1) (continued)

Symbol

Parameter

Conditions

CL = 50pF, VDD < 2.7 VCL = 10pF, VDD > 2.7 VCL = 50pF, VDD < 2.7 VCL = 10pF, VDD > 2.7 VCL = 50pF, VDD < 2.7 VCL = 10pF, VDD > 2.7 V

CL = 50pF, 2.4 < VDD < 2.7 V50(4)CL = 10pF, VDD > 2.7 VCL = 50 pF, 2.4 < VDD < 2.7 VCL = 10 pF, VDD > 2.7 VCL = 50 pF, 2.4 < VDD < 2.7 VCL = 10 pF, VDD > 2.7 V

CL = 20 pF, 2.4 < VDD < 2.7 V100(4)CL = 10 pF, VDD > 2.7 VCL = 20 pF, 2.4 < VDD < 2.7 VCL = 10 pF, VDD > 2.7 VCL = 20 pF, 2.4 < VDD < 2.7 VCL = 10 pF, VDD > 2.7 V

10100(4)50(4)Min2525

Typ

MaxTBD50(4)TBD(3)TBD(3)TBD(3)TBD(3)TBD100(4)TBD(3)TBD(3)TBD(3)TBD(3)TBD200(4)TBD(3)TBD(3)TBD(3)TBD(3)

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

nsnsMHzMHznsMHzMHznsUnitMHzMHz

fmax(IO)outMaximum frequency(2)

Output high to low level fall time

Output low to high level rise time

01

tf(IO)out

tr(IO)out

fmax(IO)outMaximum frequency(2)

Output high to low level fall time

Output low to high level rise time

(2)

10

tf(IO)out

tr(IO)out

Fmax(IO)outMaximum frequency

11

tf(IO)out

Output high to low level fall time

Output low to high level rise time

Pulse width of external signals detected by the EXTI controller

tr(IO)out

-

tEXTIpw

1.The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F20/21xxx reference manual for a

description of the GPIOx_SPEEDR GPIO port output speed register.2.The maximum frequency is defined in Figure27.3.Guaranteed by design, not tested in production.

4.For maximum frequencies above 50MHz, it is required to use the compensation cell.

Doc ID 15818 Rev 581/147

205 STM32F205xx207xx参考手册

Electrical characteristics

STM32F205xx, STM32F207xx

5.3.15 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up

resistor, RPU (see Table40).

Unless otherwise specified, the parameters given in Table43 are derived from tests

performed under the ambient temperature and VDD supply voltage conditions summarized in Table10. Table 43.

SymbolVIL(NRST)(1)

NRST pin characteristics

Parameter

NRST Input low level voltage

Conditions

Min–0.52

200

VIN = VSS

30

40

50100

VDD > 2.7 VInternal Reset source

30020

Typ

Max0.8VDD+0.5

UnitVmVkΩnsnsμs

VIH(NRST)(1)NRST Input high level voltageVhys(NRST)

RPUVF(NRST)(1)

NRST Schmitt trigger voltage hysteresis

Weak pull-up equivalent resistor(2)NRST Input filtered pulse

VNF(NRST)(1)NRST Input not filtered pulseTNRST_OUT

Generated reset pulse duration

1.Guaranteed by design, not tested in production.

2.The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution

to the series resistance must be minimum (~10% order).

82/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xx

Electrical characteristics

2.The reset network protects the device against parasitic resets.

3.The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in

Table43. Otherwise the reset is not taken into account by the device.

5.3.16 TIM timer characteristics

The parameters given in Table44 and Table45 are guaranteed by design.

Refer to Section5.3.14: I/O port characteristics for details on the input/output alternate

function characteristics (output compare, input capture, external clock, PWM output).Table 44.

Symboltres(TIM)

Characteristics of TIMx connected to the APB1 domain(1)

Parameter

Timer resolution timeTimer external clock

frequency on CH1 to CH4Timer resolution

= 60 MHz f

16-bit counter clock period TIMxCLK1when internal clock is APB1= 30MHz

0.0167selected

32-bit counter clock period

when internal clock is selected

10.0167

7158278865536 × 65536

71.6

Conditions

Min116.700

fTIMxCLK/2

3616655361092Max

UnittTIMxCLK

nsMHzMHzbittTIMxCLK

μstTIMxCLK

μstTIMxCLK

s

fEXTResTIM

tCOUNTER

tMAX_COUNTMaximum possible count

1.TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers.

Doc ID 15818 Rev 583/147

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

Electrical characteristics

Table 45.

Symboltres(TIM)

STM32F205xx, STM32F207xx

Characteristics of TIMx connected to the APB2 domain(1)

Parameter

Timer resolution timeTimer external clock

frequency on CH1 to CH4Timer resolution

16-bit counter clock period when internal clock is selected

fTIMxCLK = 120MHzAPB2 = 60MHz

10.0083

Conditions

Min18.300

fTIMxCLK/2

30166553654665536 × 65536

35.79Max

UnittTIMxCLK

nsMHzMHzbittTIMxCLK

μstTIMxCLK

s

fEXTResTIMtCOUNTER

tMAX_COUNTMaximum possible count

1.TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers.

84/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxElectrical characteristics

5.3.17 Communications interfaces

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

I2C interface characteristics

Unless otherwise specified, the parameters given in Table46 are derived from tests

performed under the ambient temperature, fPCLK1 frequency and VDD supply voltage conditions summarized in Table10.

The STM32F20x and STM32F205xx I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present.

The I2C characteristics are described in Table46. Refer also to Section5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).Table 46.

Symboltw(SCLL)tw(SCLH)tsu(SDA)th(SDA)tr(SDA)tr(SCL)tf(SDA)tf(SCL)th(STA)tsu(STA)tsu(STO)tw(STO:STA)

Cb

I2C characteristics

Standard mode I2C(1)

Parameter

Min

SCL clock low timeSCL clock high timeSDA setup timeSDA data hold timeSDA and SCL rise timeSDA and SCL fall timeStart condition hold timeRepeated Start condition setup time

Stop condition setup timeStop to Start condition time (bus free)

Capacitive load for each bus line

4.04.74.04.7

400

4.74.02500(3)

1000300

0.60.6 0.6 1.3

400

μsμsμspF

Max

Min1.3 0.6 100 0(4)20 + 0.1Cb

900(3)300300

ns

Max

μs

Fast mode I2C(1)(2)

Unit

1.Guaranteed by design, not tested in production.

2.fPCLK1 must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be

higher than 4 MHz to achieve the maximum fast mode I2C frequency.3.The maximum hold time of the Start condition has only to be met if the interface does not stretch the low

period of SCL signal.4.The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the

undefined region of the falling edge of SCL.

Doc ID 15818 Rev 585/147

205 STM32F205xx207xx参考手册

Electrical characteristicsSTM32F205xx, STM32F207xx

21.Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.

Table 47.

SCL frequency (fPCLK1= 30 MHz.,VDD = 3.3 V)(1)(2)

I2C_CCR value

fSCL (kHz)4003002001005020

RP = 4.7 kΩ0x80190x80210x80320x00960x012C0x02EE

1.RP = External pull-up resistance, fSCL = I2C speed,

2.For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the

tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application.

86/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxElectrical characteristics

I2S - SPI interface characteristics

Unless otherwise specified, the parameters given in Table48 for SPI or in Table49 for I2S are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table10.

Refer to Section5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S).Table 48.

SymbolfSCK1/tc(SCK)tr(SCK)tf(SCK)DuCy(SCK)tsu(NSS)(2)th(NSS)(2)tw(SCKH)(2)tw(SCKL)(2)tsu(MI) (2) tsu(SI)(2)th(MI) (2) th(SI)(2)ta(SO)(2)(3)tdis(SO)(2)(4)tv(SO) (2)(1)tv(MO)(2)(1)th(SO)(2)th(MO)(2)

SPI characteristics(1)

ParameterSPI clock frequency

Conditions

Master modeSlave mode

Min

Max30 30 8

304 tPCLK2 tPCLK 505554 02

3 tPCLK1025 5

152

ns

6070

UnitMHzns%

SPI clock rise and fall

Capacitive load: C = 30 pF

time

SPI slave input clock duty cycleNSS setup time NSS hold timeSCK high and low timeData input setup time

Slave modeSlave modeSlave mode

Master mode, fPCLK = 36 MHz, presc = 4Master modeSlave modeMaster modeSlave mode

Slave mode, fPCLK = 20 MHzSlave mode

Slave mode (after enable edge)Master mode (after enable edge)Slave mode (after enable edge)Master mode (after enable edge)

Data input hold timeData output access time

Data output disable time

Data output valid timeData output valid timeData output hold time

1.Remapped SPI1 characteristics to be determined.2.Based on characterization, not tested in production.

3.Min time is for the minimum time to drive the output and the max time is for the maximum time to validate

the data.4.Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put

the data in Hi-Z

Doc ID 15818 Rev 587/147

205 STM32F205xx207xx参考手册

Electrical characteristics

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xx

(1)

1.Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.

88/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xx(1)

Electrical characteristics

1.Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.

Doc ID 15818 Rev 589/147

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

Electrical characteristics

Table 49.

SymbolfCK

1/tc(CK)tr(CK)tf(CK)tv(WS) (2)th(WS) (2)tsu(WS) (2)th(WS) (2)tw(CKH) (2)tw(CKL) (2)tsu(SD_MR) (2)tsu(SD_SR) (2)th(SD_MR)(2)(3)th(SD_SR) (2)(3)th(SD_MR) (2)th(SD_SR) (2)tv(SD_ST) (2)(3)

STM32F205xx, STM32F207xx

I2S characteristics(1)

Parameter

I2S clock frequencyI2S clock rise and fall timeWS valid time WS hold timeWS setup time WS hold timeCK high and low timeData input setup timeData input hold timeData input hold time

ConditionsMasterSlave

capacitive load CL=50 pFMasterMasterSlaveSlave

Master fPCLK= TBD, presc = TBDMaster receiverSlave receiverMaster receiverSlave receiverMaster fPCLK = TBDSlave fPCLK = TBDSlave transmitter (after enable edge) fPCLK = TBD

TBDTBDTBDTBD TBD TBDTBD TBDTBD TBDTBD

TBD TBD

TBD

TBD

TBD TBD

TBD

Min TBD0

Max TBD TBD TBD

UnitMHz

ns

Data output valid time

th(SD_ST) (2)

Data output hold time

Slave transmitter (after enable edge)Master transmitter (after enable edge)fPCLK = TBD

tv(SD_MT) (2)(3)

Data output valid time

th(SD_MT) (2)

Data output hold time

Master transmitter (after enable edge)

1.TBD = to be determined.

2.Based on design simulation and/or characterization results, not tested in production.3.Depends on fPCLK. For example, if fPCLK=8 MHz, then TPCLK = 1/fPLCLK =125 ns.

90/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xx

2(1)

Electrical characteristics

1.Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD.

2.LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first

byte.

205 STM32F205xx207xx参考手册

2(1)

1.Based on characterization, not tested in production.

2.LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first

byte.

Doc ID 15818 Rev 591/147

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

Electrical characteristicsSTM32F205xx, STM32F207xx

USB OTG FS characteristics

The USB OTG interface is USB-IF certified (Full-Speed). This interface is present in both the USB OTG HS and USB OTG FS controllers.Table 50.

tSTARTUP(1)

USB OTG FS startup time

Parameter

USB OTG FS transceiver startup time

Max1

Unitμs

Symbol

1.Guaranteed by design, not tested in production.

Table 51.

Symbol

USB OTG FS DC electrical characteristics

Parameter

USB OTG FS operating voltage

I(USB_FS_DP/DM, USB_HS_DP/DM) Includes VDI range

Conditions

Min.(1)Typ.Max.(1)Unit3.0(2)0.20.81.3

RL of 1.5kΩ to 3.6V(4)RL of 15

kΩ to VSS(4)

2.817

VIN = VDD

0.65

1.1

2.0

VIN = VSSVIN = VSS

1.5

1.8

2.1

21

2.52.00.33.624

VV

3.6

V

VDD

Input levels

VDI(3)Differential input sensitivityVCM(3)VSE(3)

Differential common mode range

Single ended receiver threshold

Static output level lowStatic output level highPA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM) PA9, PB13

(OTG_FS_VBUS, OTG_HS_VBUS)

PA12, PB15 (USB_FS_DP, USB_HS_DP)

Output levels

VOLVOH

RPD

RPU

PA9, PB13

(OTG_FS_VBUS, OTG_HS_VBUS)

0.250.370.55

1.All the voltages are measured from the local ground potential.

2.The STM32F20x and STM32F205xx USB OTG FS functionality is ensured down to 2.7 V but not the full

USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.3.Guaranteed by design, not tested in production.4.RL is the load connected on the USB OTG FS drivers

92/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxElectrical characteristics

Doc ID 15818 Rev 593/147

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

Electrical characteristics

Table 52.

STM32F205xx, STM32F207xx

USB OTG FS electrical characteristics(1)

Driver characteristics

Symbol

trtftrfmVCRS

Parameter

Rise time(2)Fall timeRise/ fall time matchingOutput signal crossover voltage

ConditionsCL = 50 pF CL = 50 pF

tr/tf

Min44901.3

Max20201102.0

Unitnsns%V

1.Guaranteed by design, not tested in production.

2.Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB

Specification - Chapter 7 (version 2.0).

USB HS characteristics

Table 53.

Clock timing parameters

Parameter(1)

Symbol

8-bit ±10%

FSTART_8BITFSTEADYDSTART_8BITDSTEADY

Min5459.974049.975

Nominal60605050

Max6660.036050.0251.45.6

UnitMHzMHz%%msmsμspsns

Frequency (first transition)

Frequency (steady state) ±500ppmDuty cycle (first transition)

8-bit ±10%

Duty cycle (steady state) ±500ppm

Time to reach the steady state frequency and

TSTEADY

duty cycle after the first transitionClock startup time after the de-assertion of SuspendM

PeripheralHost

TSTART_DEVTSTART_HOST

PHY preparation time after the first transition

TPREP

of the input clockJitterRise timeFall time

1.Guaranteed by design, not tested in production.

TJITTERTRISETFALL

94/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xx

Electrical characteristics

Table 54.

ULPI timing

Value(1)

Parameter

Setup time (control in)

Symbol

Min.

tSC, tSDtHC, tHDtDC, tDDtSC, tSDtHC, tHDtDC, tDD

1.5

6.0

0.0

9.03.0Max.6.0

nsnsnsnsnsnsUnit

Output clockHold time (control in)Output delay (control out)Setup time (control in)

Input clock (optional)

Hold time (control in)Output delay (control out)

1.VDD = 3V to 3.6V and TA = –40 to 85°C.

Ethernet characteristics

Table55 shows the Ethernet operating voltage.Table 55.

Ethernet DC electrical characteristics

Parameter

VDD

Ethernet operating voltage

Min.(1)3.0

Max.(1)3.6

UnitV

Symbol

Input level

1.All the voltages are measured from the local ground potential.

Table56 gives the list of Ethernet MAC signals for the SMI (station management interface) and Figure37 shows the corresponding timing diagram.

Doc ID 15818 Rev 595/147

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

Electrical characteristics

STM32F205xx, STM32F207xx

Table 56.

SymboltMDCtd(MDIO)th(MDIO)

Dynamics characteristics: Ethernet MAC signals for SMI(1)

Rating

MDC cycle time (1.71MHz, AHB = 72MHz)MDIO write data valid time

MinTBDTBDTBDTBD

TypTBDTBDTBDTBD

MaxTBDTBDTBDTBD

Unitnsnsnsns

tsu(MDIO)Read data setup time

Read data hold time

1.TBD stands for to be determined.

Table57 gives the list of Ethernet MAC signals for the RMII and Figure38 shows the corresponding timing diagram.

205 STM32F205xx207xx参考手册

Table 57.

Symboltsu(RXD)tih(RXD)tsu(CRS)tih(CRS)td(TXEN)td(TXD)

Dynamics characteristics: Ethernet MAC signals for RMII(1)

Rating

Receive data setup timeReceive data hold timeCarrier sense set-up timeCarrier sense hold timeTransmit enable valid delay timeTransmit data valid delay time

MinTBDTBDTBDTBD00

TypTBDTBDTBDTBD9.69.9

MaxTBDTBDTBDTBD21.921

Unitnsnsnsnsnsns

1.TBD stands for to be determined.

96/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxElectrical characteristics

Table58 gives the list of Ethernet MAC signals for MII and Figure38 shows the corresponding timing diagram.

205 STM32F205xx207xx参考手册

Table 58.

Symboltsu(RXD)tih(RXD)tsu(DV)tih(DV)tsu(ER)tih(ER)td(TXEN)td(TXD)

Dynamics characteristics: Ethernet MAC signals for MII(1)

Rating

Receive data setup timeReceive data hold timeData valid setup timeData valid hold timeError setup timeError hold time

Transmit enable valid delay timeTransmit data valid delay time

MinTBDTBDTBDTBDTBDTBD13.412.9

TypTBDTBDTBDTBDTBDTBD15.516.1

MaxTBDTBDTBDTBDTBDTBD17.719.4

Unitnsnsnsnsnsnsnsns

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

1.TBD stands for to be determined.

CAN (controller area network) interface

Refer to Section5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CANTX and CANRX).

Doc ID 15818 Rev 597/147

205 STM32F205xx207xx参考手册

Electrical characteristicsSTM32F205xx, STM32F207xx

5.3.18 12-bit ADC characteristics

Unless otherwise specified, the parameters given in Table59 are derived from tests

performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table10.

Table 59.

SymbolVDDAVREF+IVREFfADCfTRIG(1)VAINRAIN(1)RADC(1)CADC(1)tlat(1)tlatr(1)tS(1)tSTAB(1)

ADC characteristics

Parameter

Power supply

Positive reference voltageCurrent on the VREF input pinADC clock frequency

VDDA = 1.8 to 2.4VVDDA = 2.4 to 3.6VfADC = 30 MHz

0 (VSSA or VREF- tied to ground)

See Equation 1 for

details

0.60.6

Conditions

Min1.81.65

160(1)Typ

Max3.6VDDA220(1)153082317VREF+501

fADC = 30MHzfADC = 30MHzfADC = 30MHz

0.10030

fADC = 30MHz12-bit resolutionfADC = 30MHz10-bit resolution

0.50.430.370.3

80.1003(3)0.0672(3)16480116.4016.3416.2716.20

UnitVVμAMHzMHzkHz1/fADCVkΩkΩpFμs1/fADCμs1/fADCμs1/fADCμsμsμsμsμs1/fADC

External trigger frequencyConversion voltage range(2)External input impedanceSampling switch resistanceInternal sample and hold capacitor

Injection trigger conversion latency

Regular trigger conversion latency

Sampling time Power-up time

tCONV(1)

Total conversion time (including sampling time)

fADC = 30MHz8-bit resolutionfADC = 30MHz6-bit resolution

9 to 492 (tS for sampling +n-bit resolution for successive approximation)

98/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxTable 59.

Symbol

Electrical characteristics

ADC characteristics (continued)

Parameter

Conditions12-bit resolutionSingle ADC

Min

Typ

Max2

UnitMsps

fS(1)

Sampling rate (fADC = 30 MHz)

12-bit resolutionInterleave Dual ADC

mode12-bit resolutionInterleave Triple ADC

modefADC = 30 MHz3 sampling time12-bit resolutionfADC = 30 MHz480 sampling time12-bit resolutionfADC = 30 MHz3 sampling time12-bit resolutionfADC = 30 MHz480 sampling time12-bit resolution

4Msps

6Msps

TBDμA

IVREF+

ADC VREF DC current

consumption in conversion mode

TBDμA

TBDμA

IDDA

ADC VDDA DC current

consumption in conversion mode

TBDμA

1.Based on characterization, not tested in production.

2.VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.

3.For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table59.

Equation 1: RAIN max formula

The formula above (Equation 1) is used to determine the maximum external impedance allowed for anerror below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Table 60.

SymbolETEOEGEDEL

a

ADC accuracy (1)

Parameter

Total unadjusted errorOffset errorGain error

Differential linearity errorIntegral linearity error

fPCLK2 = 60 MHz,

fADC = 30 MHz, RAIN < 10 kΩ, VDDA = 1.8 V to 3.6 V

Test conditions

Typ±2±1.5±1.5±1±1.5

Max(2)±5±2.5±3±2±3

LSBUnit

1.Better performance could be achieved in restricted VDD, frequency and temperature ranges.2.Based on characterization, not tested in production.

Note:

ADC accuracy vs. negative injection current: Injecting a negative current on any of the

standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to

Doc ID 15818 Rev 599/147

205 STM32F205xx207xx参考手册

Electrical characteristicsSTM32F205xx, STM32F207xx

add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative currents.

Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section5.3.14 does not affect the ADC accuracy.

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

1.Refer to Table59 for the values of RAIN, RADC and CADC.

2.Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the

pad capacitance (roughly 7pF). A high Cparasitic value downgrades conversion accuracy. To remedy this, fADC should be reduced.

100/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

STM32F205xx, STM32F207xxElectrical characteristics

General PCB design guidelines

Power supply decoupling should be performed as shown in Figure42 or Figure43,

depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be

ceramic (good quality). They should be placed them as close as possible to the chip.

205 STM32F205xx207xx参考手册

1.VREF+ and VREF– inputs are available only on 100-pin packages.

205 STM32F205xx207xx参考手册

1.VREF+ and VREF– inputs are available only on 100-pin packages.

Doc ID 15818 Rev 5101/147

205 STM32F205xx207xx参考手册

Electrical characteristicsSTM32F205xx, STM32F207xx

5.3.19 DAC electrical specifications

Table 61.

SymbolVDDAVREF+VSSARLOAD(1)RO(1)

DAC characteristics

Parameter

Analog supply voltageReference supply voltageGround

Resistive load with buffer ONImpedance output with buffer

OFF

Min1.81.805

Typ

Max3.6 3.60

UnitVVVkΩ

When the buffer is OFF, the

Minimum resistive load between DAC_OUT and VSS to have a 1% accuracy is 1.5MΩ

Maximum capacitive load at

DAC_OUT pin (when the buffer is ON).

It gives the maximum output excursion of the DAC.

It corresponds to 12-bit input code (0x0E0) to (0xF1C) at VREF+ = 3.6V and (0x1C7) to (0xE38) at VREF+ = 1.8V

It gives the maximum output excursion of the DAC.

With no load, worst code (0xF1C) at VREF+ = 3.6V in terms of DC consumption on the inputsWith no load, middle code (0x800) on the inputs

With no load, worst code (0xF1C) at VREF+ = 3.6V in terms of DC consumption on the inputsGiven for the DAC in 10-bit configuration.

Given for the DAC in 12-bit configuration.

Given for the DAC in 10-bit configuration.

Given for the DAC in 12-bit configuration.VREF+ ≤ VDDA

Comments

15kΩ

CLOAD(1)

Capacitive load50pF

DAC_OUT Lower DAC_OUT voltage min(1)with buffer ONDAC_OUT Higher DAC_OUT voltage

with buffer ONmax(1)

DAC_OUT Lower DAC_OUT voltage

min(1)with buffer OFFDAC_OUT Higher DAC_OUT voltage

with buffer OFFmax(1)IVREF+

DAC DC VREF current consumption in quiescent mode (Standby mode)DAC DC VDDA current consumption in quiescent mode (Standby mode)

VDDA – 0.2

0.5

VREF+ – 1LSB

220

VmVV

μA

380μA

IDDA

480μA

DNL(2)

Differential non linearity Difference between two consecutive code-1LSB)Integral non linearity (difference between

measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)

±1

LSB

INL(2)

±4LSB

102/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxTable 61.

Symbol

Electrical characteristics

DAC characteristics (continued)

Parameter

Offset error

(difference between

measured value at Code (0x800) and the ideal value = VREF+/2)Gain error

Min

Typ

Max±10±3±12±0.5

UnitmVLSBLSB%

Comments

Given for the DAC in 12-bit configuration

Given for the DAC in 10-bit at VREF+ = 3.6V

Given for the DAC in 12-bit at VREF+ = 3.6V

Given for the DAC in 12bit configuration

Offset(2)

Gain error(2)

Settling time (full scale: for a 10-bit input code transition between the lowest and the

tSETTLING(2)

highest input codes when DAC_OUT reaches final value ±4LSBTHD(2)

Total Harmonic DistortionBuffer ON

Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)Wakeup time from off state (Setting the ENx bit in the DAC Control register)Power supply rejection ratio (to VDDA) (static DC measurement)

34μs

pF,CLOAD ≤ 50

RLOAD ≥ 5 kΩ

dB

pF,CLOAD ≤ 50

RLOAD ≥ 5 kΩpF,CLOAD ≤ 50

RLOAD ≥ 5 kΩ

pF, RLOAD ≥ 5 kΩCLOAD ≤ 50

input code between lowest and highest possible ones.No RLOAD, CLOAD = 50 pF

Update

rate(1)

1MS/s

tWAKEUP(2)

6.510μs

PSRR+

(1)

dB

1.Guaranteed by design, not tested in production.

2.Guaranteed by characterization, not tested in production.

1.The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly

without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

Doc ID 15818 Rev 5103/147

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

Electrical characteristicsSTM32F205xx, STM32F207xx

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

5.3.20 Temperature sensor characteristics

Table 62.

SymbolTL(1)V25(1)tSTART(2)TS_temp

(3)(2)

TS characteristics

Parameter

VSENSE linearity with temperature

Min

Typ±12.50.76

416

10Max±2

Unit°CmV/°CVμsμs

Avg_Slope(1)Average slope

Voltage at 25 °CStartup time

ADC sampling time when reading the

temperature1°C accuracy

1.Based on characterization, not tested in production.2.Guaranteed by design, not tested in production.

3.Shortest sampling time can be determined in the application by multiple iterations.

5.3.21 VBAT monitoring characteristics

Table 63.

SymbolR(1)

VBAT monitoring characteristics

Parameter

Resistor bridge for VBATRatio on VBAT measurementError on Q

ADC sampling time when reading the VBAT1mV accuracy

-1TBDMin

TypTBD2

+1

%μs

Max

UnitKOhm

Q(1)

Er(1)TS_vbat(2)(2)

1.Guaranteed by design, not tested in production.

2.Shortest sampling time can be determined in the application by multiple iterations.

5.3.22 Embedded reference voltage

The parameters given in Table64 are derived from tests performed under ambient

temperature and VDD supply voltage conditions summarized in Table10.Table 64.

SymbolVREFINT

Embedded internal reference voltage

Parameter

Internal reference voltageADC sampling time when reading the internal reference voltage

Conditions–40 °C < TA < +105°C–40 °C < TA < +85°C

Min1.161.16

Typ 1.201.205.1

Max1.261.24TBD(2)

UnitVVμs

TS_vrefint

(1)

104/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xx

Table 64.

SymbolVRERINT(2)TCoeff(2)

Electrical characteristics

Embedded internal reference voltage

Parameter

Internal reference voltage spread over the temperature range

Temperature coefficient

ConditionsVDD = 3 V ±10 mV

Min

Typ

Max10100

UnitmVppm/°C

1.Shortest sampling time can be determined in the application by multiple iterations.2.Guaranteed by design, not tested in production.

5.3.23 FSMC characteristics

Asynchronous waveforms and timings

Figure45 through Figure48 represent asynchronous waveforms and Table65 through

Table68 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

●●●

AddressSetupTime = 0AddressHoldTime = 1DataSetupTime = 1

205 STM32F205xx207xx参考手册

1.Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Doc ID 15818 Rev 5105/147

205 STM32F205xx207xx参考手册

Electrical characteristics

Table 65.

Symboltw(NE)tv(NOE_NE)tw(NOE)th(NE_NOE)tv(A_NE)th(A_NOE)tv(BL_NE)th(BL_NOE)tsu(Data_NE)th(Data_NOE)th(Data_NE)tv(NADV_NE)tw(NADV)

1.CL = 15 pF.

2.Based on characterization, not tested in production.

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xx

Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1) (2)

Parameter

FSMC_NE low time

FSMC_NEx low to FSMC_NOE lowFSMC_NOE low time

Min5THCLK – 1.50.5

5THCLK – 1.5

Max5THCLK + 21.5

5THCLK + 1.57

0.1

2THCLK + 252THCLK + 2500

5

THCLK + 1.5

Unitnsnsnsnsnsnsnsnsnsnsnsnsnsns

FSMC_NOE high to FSMC_NE high hold time–1.5FSMC_NEx low to FSMC_A validAddress hold time after FSMC_NOE highFSMC_NEx low to FSMC_BL validFSMC_BL hold time after FSMC_NOE highData to FSMC_NEx high setup time

tsu(Data_NOE)Data to FSMC_NOEx high setup time

Data hold time after FSMC_NOE highData hold time after FSMC_NEx highFSMC_NEx low to FSMC_NADV lowFSMC_NADV low time

1.Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

106/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xx

Table 66.

Symboltw(NE)tv(NWE_NE)tw(NWE)th(NE_NWE)tv(A_NE)th(A_NWE)tv(BL_NE)th(BL_NWE)tv(Data_NE)th(Data_NWE)tv(NADV_NE)tw(NADV)

1.CL = 15 pF.

2.Based on characterization, not tested in production.

205 STM32F205xx207xx参考手册

Electrical characteristics

Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)

Parameter

FSMC_NE low time

FSMC_NEx low to FSMC_NWE lowFSMC_NWE low time

FSMC_NWE high to FSMC_NE high hold timeFSMC_NEx low to FSMC_A validAddress hold time after FSMC_NWE highFSMC_NEx low to FSMC_BL valid

FSMC_BL hold time after FSMC_NWE highFSMC_NEx low to Data valid

Data hold time after FSMC_NWE highFSMC_NEx low to FSMC_NADV lowFSMC_NADV low time

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

THCLK

5.5THCLK + 1.5

THCLK – 0.5

THCLK + 7

THCLK

1.5

Min3THCLK – 1THCLK – 0.5THCLK – 0.5THCLK

7.5

Max3THCLK + 2THCLK + 1.5THCLK + 1.5

Unitnsnsnsnsnsnsnsnsnsnsnsns

Doc ID 15818 Rev 5107/147

205 STM32F205xx207xx参考手册

Electrical characteristics

Table 67.

Symboltw(NE)tv(NOE_NE)tw(NOE)th(NE_NOE)tv(A_NE)tv(NADV_NE)tw(NADV)th(AD_NADV)th(A_NOE)th(BL_NOE)tv(BL_NE)tsu(Data_NE)th(Data_NE)th(Data_NOE)

1.CL = 15 pF.

2.Based on characterization, not tested in production.

STM32F205xx, STM32F207xx

Asynchronous multiplexed PSRAM/NOR read timings(1)(2)

Parameter

FSMC_NE low time

FSMC_NEx low to FSMC_NOE lowFSMC_NOE low time

FSMC_NOE high to FSMC_NE high hold timeFSMC_NEx low to FSMC_A validFSMC_NEx low to FSMC_NADV lowFSMC_NADV low time

FSMC_AD (address) valid hold time after FSMC_NADV high

Address hold time after FSMC_NOE highFSMC_BL hold time after FSMC_NOE highFSMC_NEx low to FSMC_BL validData to FSMC_NEx high setup timeData hold time after FSMC_NEx highData hold time after FSMC_NOE high

2THCLK + 242THCLK + 25003

THCLK –1.5THCLKTHCLK0

Min7THCLK – 24THCLK – 1–1

05

THCLK + 1.5

Max7THCLK + 24THCLK + 2

Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns

3THCLK – 0.53THCLK + 1.5 ns

tsu(Data_NOE)Data to FSMC_NOE high setup time

108/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxElectrical characteristics

Table 68.

Symboltw(NE)tv(NWE_NE)tw(NWE)th(NE_NWE)tv(A_NE)tv(NADV_NE)tw(NADV)th(AD_NADV)th(A_NWE)tv(BL_NE)th(BL_NWE)

Asynchronous multiplexed PSRAM/NOR write timings(1)(2)

Parameter

FSMC_NE low time

FSMC_NEx low to FSMC_NWE lowFSMC_NWE low time

FSMC_NWE high to FSMC_NE high hold timeFSMC_NEx low to FSMC_A validFSMC_NEx low to FSMC_NADV lowFSMC_NADV low time

FSMC_AD (address) valid hold time after FSMC_NADV high

Address hold time after FSMC_NWE highFSMC_NEx low to FSMC_BL valid

FSMC_BL hold time after FSMC_NWE high

THCLK – 1.5

THCLK + 1.5

THCLK – 53THCLK – 1THCLK – 34THCLK

1.6

Min5THCLK – 12THCLK2THCLK – 1THCLK – 1

75THCLK + 1

Max5THCLK + 22THCLK + 12THCLK + 2

Unitnsnsnsnsnsnsnsnsnsnsnsnsns

tv(Data_NADV)FSMC_NADV high to Data validth(Data_NWE)

1.CL = 15 pF.

2.Based on characterization, not tested in production.

Data hold time after FSMC_NWE high

Doc ID 15818 Rev 5109/147

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

Electrical characteristicsSTM32F205xx, STM32F207xx

Synchronous waveforms and timings

Figure49 through Figure52 represent synchronous waveforms and Table70 through

Table72 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

●●●●●

BurstAccessMode = FSMC_BurstAccessMode_Enable;MemoryType = FSMC_MemoryType_CRAM;WriteBurst = FSMC_WriteBurst_Enable;

CLKDivision = 1; (0 is not supported, see the STM32F20xxx/21xxx reference manual)DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM

205 STM32F205xx207xx参考手册

110/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xx

Table 69.

Symboltw(CLK)td(CLKL-NExL)td(CLKH-NExH)td(CLKL-NADVL)td(CLKL-NADVH)td(CLKL-AV)td(CLKH-AIV)td(CLKL-NOEL)td(CLKH-NOEH)td(CLKL-ADV)td(CLKL-ADIV)tsu(ADV-CLKH)th(CLKH-ADV)

FSMC_CLK period

FSMC_CLK low to FSMC_NEx low (x = 0...2)FSMC_CLK high to FSMC_NEx high (x = 0...2)FSMC_CLK low to FSMC_NADV lowFSMC_CLK low to FSMC_NADV high

FSMC_CLK low to FSMC_Ax valid (x = 16...25)

5

Electrical characteristics

Synchronous multiplexed NOR/PSRAM read timings(1)(2)

Parameter

Min27.7

1.5

THCLK + 2

4Max

Unit ns ns ns ns ns

ns ns

THCLK +1

THCLK + 0.5

12

ns ns ns ns

FSMC_CLK high to FSMC_Ax invalid (x = 16...25)THCLK + 2FSMC_CLK low to FSMC_NOE lowFSMC_CLK high to FSMC_NOE highFSMC_CLK low to FSMC_AD[15:0] validFSMC_CLK low to FSMC_AD[15:0] invalidFSMC_A/D[15:0] valid data before FSMC_CLK high

6ns

ns ns ns

FSMC_A/D[15:0] valid data after FSMC_CLK highTHCLK – 10

82

tsu(NWAITV-CLKH)FSMC_NWAIT valid before FSMC_CLK highth(CLKH-NWAITV)

1.CL = 15 pF.

2.Based on characterization, not tested in production.

FSMC_NWAIT valid after FSMC_CLK high

Doc ID 15818 Rev 5111/147

205 STM32F205xx207xx参考手册

Electrical characteristicsSTM32F205xx, STM32F207xx112/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xx

Table 70.

Symboltw(CLK)td(CLKL-NExL)td(CLKH-NExH)td(CLKL-NADVL)td(CLKL-NADVH)td(CLKL-AV)td(CLKH-AIV)td(CLKL-NWEL)td(CLKH-NWEH)td(CLKL-ADV)td(CLKL-ADIV)td(CLKL-Data)tsu(NWAITV-CLKH)th(CLKH-NWAITV)td(CLKL-NBLH)

1.CL = 15 pF.

2.Based on characterization, not tested in production.

Electrical characteristics

Synchronous multiplexed PSRAM write timings(1)(2)

Parameter

FSMC_CLK period

FSMC_CLK low to FSMC_Nex low (x = 0...2)FSMC_CLK high to FSMC_NEx high (x = 0...2)FSMC_CLK low to FSMC_NADV lowFSMC_CLK low to FSMC_NADV high

FSMC_CLK low to FSMC_Ax valid (x = 16...25)FSMC_CLK high to FSMC_Ax invalid (x = 16...25)FSMC_CLK low to FSMC_NWE lowFSMC_CLK high to FSMC_NWE highFSMC_CLK low to FSMC_AD[15:0] validFSMC_CLK low to FSMC_AD[15:0] invalidFSMC_A/D[15:0] valid after FSMC_CLK lowFSMC_NWAIT valid before FSMC_CLK highFSMC_NWAIT valid after FSMC_CLK highFSMC_CLK low to FSMC_NBL high

7213

6

THCLK +1

12

TCK + 2

1

5

THCLK + 2

4

Min27.7

2Max

Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns

Doc ID 15818 Rev 5113/147

205 STM32F205xx207xx参考手册

Electrical characteristicsSTM32F205xx, STM32F207xx

Table 71.

Symboltw(CLK)td(CLKL-NExL)td(CLKH-NExH)td(CLKL-NADVL)

Synchronous non-multiplexed NOR/PSRAM read timings(1)(2)

Parameter

FSMC_CLK period

FSMC_CLK low to FSMC_NEx low (x = 0...2)FSMC_CLK high to FSMC_NEx high (x = 0...2)FSMC_CLK low to FSMC_NADV lowFSMC_CLK low to FSMC_NADV highFSMC_CLK low to FSMC_Ax valid (x = 0...25)

FSMC_CLK high to FSMC_Ax invalid (x = 0...25)THCLK + 4FSMC_CLK low to FSMC_NOE lowFSMC_CLK high to FSMC_NOE high

THCLK + 1.57725

THCLK + 2

4

Min27.7

1.5

Max

Unit ns ns ns ns ns ns ns

THCLK + 1.5 ns

ns ns ns ns ns

td(CLKL-NADVH)td(CLKL-AV)td(CLKH-AIV)td(CLKL-NOEL)td(CLKH-NOEH)tsu(DV-CLKH)th(CLKH-DV)th(CLKH-NWAITV)

1.CL = 15 pF.

FSMC_D[15:0] valid data before FSMC_CLK high6.5FSMC_D[15:0] valid data after FSMC_CLK high

tsu(NWAITV-CLKH)FSMC_NWAIT valid before FSMC_SMCLK high

FSMC_NWAIT valid after FSMC_CLK high

2.Based on characterization, not tested in production.

114/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxElectrical characteristics

Table 72.

Symboltw(CLK)td(CLKL-NExL)td(CLKH-NExH)

Synchronous non-multiplexed PSRAM write timings(1)(2)

Parameter

FSMC_CLK period

FSMC_CLK low to FSMC_NEx low (x = 0...2) FSMC_CLK high to FSMC_NEx high (x = 0...2) FSMC_CLK low to FSMC_NADV low FSMC_CLK low to FSMC_NADV high

FSMC_CLK low to FSMC_Ax valid (x = 16...25) FSMC_CLK high to FSMC_Ax invalid (x = 16...25) FSMC_CLK low to FSMC_NWE low FSMC_CLK high to FSMC_NWE high

FSMC_D[15:0] valid data after FSMC_CLK low

721THCLK + 1

6

TCK + 2

1

5

THCLK + 2

4

Min27.7

2Max

Unit ns ns ns ns ns ns ns ns ns ns ns ns ns

td(CLKL-NADVL)td(CLKL-NADVH)td(CLKL-AV)td(CLKH-AIV)td(CLKL-NWEL)td(CLKH-NWEH)td(CLKL-Data)th(CLKH-NWAITV)td(CLKL-NBLH)

1.CL = 15 pF.

tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high

FSMC_NWAIT valid after FSMC_CLK high FSMC_CLK low to FSMC_NBL high

2.Based on characterization, not tested in production.

Doc ID 15818 Rev 5115/147

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

Electrical characteristicsSTM32F205xx, STM32F207xxPC Card/CompactFlash controller waveforms and timings

Figure53 through Figure58 represent synchronous waveforms and Table73 provides the

corresponding timings. The results shown in this table are obtained with the following FSMC

configuration:

●COM.FSMC_SetupTime = 0x04;COM.FSMC_WaitSetupTime = 0x07;COM.FSMC_HoldSetupTime = 0x04;COM.FSMC_HiZSetupTime = 0x00;ATT.FSMC_SetupTime = 0x04;ATT.FSMC_WaitSetupTime = 0x07;ATT.FSMC_HoldSetupTime = 0x04;ATT.FSMC_HiZSetupTime = 0x00;IO.FSMC_SetupTime = 0x04;IO.FSMC_WaitSetupTime = 0x07;IO.FSMC_HoldSetupTime = 0x04;IO.FSMC_HiZSetupTime = 0x00;TCLRSetupTime = 0;TARSetupTime = 0;

Figure 53.PC Card/CompactFlash controller waveforms for common memory read

205 STM32F205xx207xx参考手册

1.FSMC_NCE4_2 remains high (inactive during 8-bit access.

116/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxElectrical characteristics

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

Figure 54.PC Card/CompactFlash controller waveforms for common memory write

205 STM32F205xx207xx参考手册

Doc ID 15818 Rev 5117/147

205 STM32F205xx207xx参考手册

Electrical characteristicsSTM32F205xx, STM32F207xxFigure 55.PC Card/CompactFlash controller waveforms for attribute memory read

205 STM32F205xx207xx参考手册

1.Only data bits 0...7 are read (bits 8...15 are disregarded).

118/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxElectrical characteristics

Figure 56.PC Card/CompactFlash controller waveforms for attribute memory write

205 STM32F205xx207xx参考手册

1.Only data bits 0...7 are driven (bits 8...15 remains Hi-Z).

205 STM32F205xx207xx参考手册

Doc ID 15818 Rev 5119/147

205 STM32F205xx207xx参考手册

Electrical characteristicsSTM32F205xx, STM32F207xx

Table 73.

Symboltv(NCEx-A) tv(NCE4_1-A)th(NCEx-AI) th(NCE4_1-AI)

Switching characteristics for PC Card/CF read and write cycles(1)(2)

Parameter

FSMC_NCEx low (x = 4_1/4_2) to FSMC_Ay valid (y = 0...10) FSMC_NCE4_1 low (x = 4_1/4_2) to FSMC_Ay valid (y = 0...10)

FSMC_NCEx high (x = 4_1/4_2) to FSMC_Ax invalid (x = 0...10) FSMC_NCE4_1 high (x = 4_1/4_2) to FSMC_Ax invalid (x = 0...10)

FSMC_NCEx low to FSMC_NREG valid FSMC_NCE4_1 low to FSMC_NREG valid

2.5

MinMaxUnit

0ns

ns

td(NREG-NCEx) td(NREG-NCE4_1)th(NCEx-NREG) th(NCE4_1-NREG)td(NCE4_1-NOE)tw(NOE)td(NOE-NCE4_1tsu(D-NOE)th(NOE-D)tw(NWE)td(NWE-NCE4_1)td(NCE4_1-NWE)tv(NWE-D)th(NWE-D)td(D-NWE)

5ns

ns

5THCLK + 2

8THCLK –1.58THCLK + 15THCLK + 225158THCLK – 15THCLK + 2

8THCLK + 2

ns ns ns ns ns ns ns

5THCLK + 1.5 ns0

11THCLK13THCLK

ns ns ns

FSMC_NCEx high to FSMC_NREG invalid FSMC_NCE4_1

THCLK + 3

high to FSMC_NREG invalid

FSMC_NCE4_1 low to FSMC_NOE lowFSMC_NOE low width

FSMC_NOE high to FSMC_NCE4_1 highFSMC_D[15:0] valid data before FSMC_NOE highFSMC_D[15:0] valid data after FSMC_NOE highFSMC_NWE low width

FSMC_NWE high to FSMC_NCE4_1 highFSMC_NCE4_1 low to FSMC_NWE lowFSMC_NWE low to FSMC_D[15:0] validFSMC_NWE high to FSMC_D[15:0] invalidFSMC_D[15:0] valid before FSMC_NWE high

120/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxTable 73.

Symboltw(NIOWR)tv(NIOWR-D)th(NIOWR-D)

Electrical characteristics

Switching characteristics for PC Card/CF read and write cycles(1)(2) (continued)

Parameter

FSMC_NIOWR low width

FSMC_NIOWR low to FSMC_D[15:0] validFSMC_NIOWR high to FSMC_D[15:0] invalid

11THCLK

5THCLK+3ns

5THCLK – 5

Min8THCLK + 3

5THCLK +1

Max

Unit ns ns ns ns ns

5THCLK + 2.5 ns

5THCLK – 54.59

8THCLK + 2

ns ns ns ns

td(NCE4_1-NIOWR)FSMC_NCE4_1 low to FSMC_NIOWR validth(NCEx-NIOWR) FSMC_NCEx high to FSMC_NIOWR invalid th(NCE4_1-NIOWR)FSMC_NCE4_1 high to FSMC_NIOWR invalid

td(NIORD-NCEx) FSMC_NCEx low to FSMC_NIORD valid FSMC_NCE4_1 td(NIORD-NCE4_1)low to FSMC_NIORD valid

th(NCEx-NIORD) FSMC_NCEx high to FSMC_NIORD invalid th(NCE4_1-NIORD)FSMC_NCE4_1 high to FSMC_NIORD invalidtsu(D-NIORD)td(NIORD-D)tw(NIORD)

1.CL = 15 pF.

2.Based on characterization, not tested in production.

FSMC_D[15:0] valid before FSMC_NIORD highFSMC_D[15:0] valid after FSMC_NIORD highFSMC_NIORD low width

NAND controller waveforms and timings

Figure59 through Figure62 represent synchronous waveforms and Table74 provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

●●●●●●●●●●●●●●

COM.FSMC_SetupTime = 0x01;COM.FSMC_WaitSetupTime = 0x03;COM.FSMC_HoldSetupTime = 0x02;COM.FSMC_HiZSetupTime = 0x01;ATT.FSMC_SetupTime = 0x01;ATT.FSMC_WaitSetupTime = 0x03;ATT.FSMC_HoldSetupTime = 0x02;ATT.FSMC_HiZSetupTime = 0x01;Bank = FSMC_Bank_NAND;

MemoryDataWidth = FSMC_MemoryDataWidth_16b;ECC = FSMC_ECC_Enable;

ECCPageSize = FSMC_ECCPageSize_512Bytes;TCLRSetupTime = 0;TARSetupTime = 0;

Doc ID 15818 Rev 5121/147

205 STM32F205xx207xx参考手册

Electrical characteristics

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xx

205 STM32F205xx207xx参考手册

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

122/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxElectrical characteristics

Table 74.

Symboltd(D-NWE)(2)tw(NOE)(2)tsu(D-NOE)(2)th(NOE-D)(2)tw(NWE)(2)tv(NWE-D)(2)th(NWE-D)(2)

Switching characteristics for NAND Flash read and write cycles(1)

Parameter

FSMC_D[15:0] valid before FSMC_NWE highFSMC_NOE low width

FSMC_D[15:0] valid data before FSMC_NOE high

Min6THCLK + 12

Max

Unit ns

4THCLK – 1.54THCLK + 1.5 ns25

ns ns

4THCLK + 2.5 ns0

10THCLK + 4

ns ns

3THCLK + 1.5 ns

3THCLK + 4.5

3THCLK + 2

3THCLK + 4.5

ns ns ns

FSMC_D[15:0] valid data after FSMC_NOE high7FSMC_NWE low width

FSMC_NWE low to FSMC_D[15:0] validFSMC_NWE high to FSMC_D[15:0] invalid

4THCLK – 1

td(ALE-NWE)(3)FSMC_ALE valid before FSMC_NWE lowth(NWE-ALE)(3)FSMC_NWE high to FSMC_ALE invalidtd(ALE-NOE)(3)FSMC_ALE valid before FSMC_NOE lowth(NOE-ALE)(3)FSMC_NWE high to FSMC_ALE invalid

1.CL = 15 pF.

2.Based on characterization, not tested in production.3.Guaranteed by design, not tested in production.

5.3.24 Camera interface (DCMI) timing specifications

Table 75.

Symbol

DCMI characteristics

Parameter

Frequency ratio

DCMI_PIXCLK/fHCLK

ConditionsDCMI_PIXCLK= 48MHz

Min

Max2.5

Unit

Doc ID 15818 Rev 5123/147

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

Electrical characteristicsSTM32F205xx, STM32F207xx

5.3.25 SD/SDIO MMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in Table76 are derived from tests

performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table10.

Refer to Section5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (D[7:0], CMD, CK).

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

Table 76.

SymbolfPP-

SD / MMC characteristics

Parameter

Clock frequency in data transfer mode

SDIO_CK/fPCLK2 frequency ratio

ConditionsCL ≤ 30 pF-Min0-Max488/3

UnitMHz-

124/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xx

Table 76.

SymboltW(CKL)tW(CKH)

trtf

Electrical characteristics

SD / MMC characteristics (continued)

Parameter

Clock low time, fPP = 16MHzClock high time, fPP = 16MHzClock rise timeClock fall time

ConditionsCL ≤ 30 pFCL ≤ 30 pFCL ≤ 30 pFCL ≤ 30 pF

Min3231

3.55

ns

Max

Unit

CMD, D inputs (referenced to CK)

tISUtIH

Input setup timeInput hold time

CL ≤ 30 pFCL ≤ 30 pF

20

ns

CMD, D outputs (referenced to CK) in MMC and SD HS mode

tOVtOH

Output valid timeOutput hold time

CL ≤ 30 pFCL ≤ 30 pF

0.3

6

ns

CMD, D outputs (referenced to CK) in SD default mode(1)

tOVDtOHD

Output valid default timeOutput hold default time

CL ≤ 30 pFCL ≤ 30 pF

0.5

7

ns

1.Refer to SDIO_CLKCR, the SDI clock control register to control the CK output.

5.3.26 RTC characteristics

Table 77.

Symbol

-

RTC characteristics

Parameter

fPCLK1/RTCCLK frequency

ratio

ConditionsAny read/write

operation from/to an RTC register

Min4

Max-Unit-

Doc ID 15818 Rev 5125/147

205 STM32F205xx207xx参考手册

Package characteristicsSTM32F205xx, STM32F207xx6 Package characteristics

6.1 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of

ECOPACK? packages, depending on their level of environmental compliance. ECOPACK?

specifications, grade definitions and product status are available at: www.st.com.

ECOPACK? is an ST trademark.

126/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xx

Package characteristics

Figure 66.Recommended footprint(1)(2)

Figure 65.LQFP64 – 10 x 10 mm 64 pin low-profile

205 STM32F205xx207xx参考手册

(1)

1.Drawing is not to scale.2.Dimensions are in millimeters.

Table 78.

Symbol

LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data

millimeters

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

Min

Typ

Max

Min

inches(1)

Typ

Max0.0630

0.00200.05310.00670.0035

0.47240.39370.47240.39370.0197

7°0.750

0°0.0177

3.5°0.02360.0394

7°0.0295

0.05510.0087

0.00590.05710.01060.0079

AA1A2bc

1

EE1eθLL1N

1.6000.0501.3500.1700.090

1.4000.220

0.1501.4500.270

0.500

0°0.450

3.5°0.600

Number of pins

64

1.Values in inches are converted from mm and rounded to 4 decimal digits.

Doc ID 15818 Rev 5127/147

205 STM32F205xx207xx参考手册

Package characteristicsSTM32F205xx, STM32F207xx

1.Drawing is not to scale.

Table 79.WLCSP64+2 - 0.400 mm pitch wafer level chip size package mechanical data

millimeters

inches

Max0.6200.2100.4100.3003.6944.026

Typ0.02240.00750.01500.01060.14460.1577

Min0.02050.00670.01380.00940.14390.1569

0.0020

Max0.02440.00830.01610.01180.14540.1585

Symbol

Typ

AA1A2bDEee1FGeee

0.5700.1900.3800.2703.6744.0060.4003.2000.2370.403

Min0.5200.1700.3500.2403.6543.986

0.01570.12600.00930.01590.050

128/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xx

Package characteristics

Figure 69.Recommended footprint(1)(2)

Figure 68.LQFP100, 14 x 14 mm 100-pin low-profile

205 STM32F205xx207xx参考手册

(1)

1.Drawing is not to scale.2.Dimensions are in millimeters.

Table 80.

Symbol

LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data

millimeters

Min

Typ

Max1.600

0.0501.3500.1700.09015.80013.80015.80v13.800

16.00014.00012.00016.00014.00012.0000.500

0.4500°

0.6001.0003.5°0.080

0.750

0.0177

16.20014.200

0.62200.5433

1.4000.220

0.1501.4500.2700.20016.20014.200

0.00200.05310.00670.00350.62200.5433

0.62990.55120.47240.62990.55120.47240.01970.02360.03943.5°0.0031

7°0.02950.63780.5591

0.05510.0087

Min

inches(1)

Typ

Max0.06300.00590.05710.01060.00790.63780.5591

AA1A2bcDD1D3EE1E3eLL1kccc

1.Values in inches are converted from mm and rounded to 4 decimal digits.

Doc ID 15818 Rev 5129/147

205 STM32F205xx207xx参考手册

Package characteristics

STM32F205xx, STM32F207xxFigure 71.Recommended

(1)(2)

Figure 70.LQFP144, 20 x 20 mm, 144-pin low-profile quad

205 STM32F205xx207xx参考手册

(1)

1.Drawing is not to scale.2.Dimensions are in millimeters.

Table 81.

Symbol

LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data

millimeters

Min

Typ

Max1.600

0.0501.3500.1700.09021.80019.80021.80019.800

22.00020.00017.50022.00020.00017.5000.500

0.4500°

0.6001.0003.5°0.080

0.750

0.0177

22.20020.200

0.85830.7795

1.4000.220

0.1501.4500.2700.20022.20020.200

0.00200.05310.00670.00350.85830.7795

0.86610.78740.6890.86610.78740.68900.01970.02360.03943.5°0.0031

7°0.02950.87400.7953

0.05510.0087

Min

inches(1)

Typ

Max0.06300.00590.05710.01060.00790.8740.7953

AA1A2bcDD1D3EE1E3eLL1kccc

1.Values in inches are converted from mm and rounded to 4 decimal digits.

130/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxPackage characteristics

1.Drawing is not to scale.

Table 82.

Symbol

LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm package mechanical data

millimeters

Min

Typ

Max1.600

0.0501.3500.1700.09023.90023.900

0.500

25.90025.9000.450

1.0001.2501.250

0.080

0.0031

26.10026.1000.750

1.01971.01970.0177

0.03940.04920.0492

0.1501.4500.2700.20024.10024.100

0.00200.05310.00670.00350.94090.9409

0.0197

1.02761.02760.0295

Min

inches(1)

Typ

Max0.06300.00590.05710.01060.00790.94880.9488

AA1A2bcDEeHDHEL(2)L1ZDZEkccc

1.Values in inches are converted from mm and rounded to 4 decimal digits.2.L dimension is measured at gauge plane at 0.25 mm above the seating plane.

Doc ID 15818 Rev 5131/147

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

Package characteristicsSTM32F205xx, STM32F207xx

1.Drawing is not to scale.

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

Table 83.

Symbol

UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data

millimeters

Min

Typ0.5300.0800.4500.130

0.2700.3009.9509.9500.6000.400

0.3200.35010.00010.0000.6500.4500.1200.1500.080

0.3700.40010.05010.0500.7000.500

0.01060.01180.37400.37400.02360.0157

Max0.6100.1100.500

Min0.01810.0020.0157

inches(1)

Typ0.02090.00310.01770.00510.01260.01380.39370.39370.02560.01770.00470.00590.0031

0.01460.01570.39570.39570.02760.0197Max0.02400.00430.0197

AA1A2A3A4bDEeFdddeeefff

0.4600.0500.400

1.Values in inches are converted from mm and rounded to 4 decimal digits.

132/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxPackage characteristics

6.2 Thermal characteristics

The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated

using the following equation:

TJ max = TA max + (PD max x ΘJA)

Where:

●TA max is the maximum ambient temperature in °C,ΘJA is the package junction-to-ambient thermal resistance, in °C/W,PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip

internal power.

PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),PI/O max represents the maximum power dissipation on output pins where:

taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the

application.

Table 84.

Symbol Package thermal characteristicsParameter

Thermal resistance junction-ambient

LQFP 64 - 10 × 10 mm / 0.5 mm pitch

Thermal resistance junction-ambient

WLCSP64+2 - 0.400 mm pitch

Thermal resistance junction-ambient

LQFP 100 - 14 × 14 mm / 0.5 mm pitch

Thermal resistance junction-ambient

LQFP 144 - 20 × 20 mm / 0.5 mm pitch

Thermal resistance junction-ambient

LQFP 176 - 24 × 24 mm / 0.5 mm pitch

Thermal resistance junction-ambient

UFBGA176 - 10× 10 mm / 0.5 mm pitchValue455146°C/W40UnitΘJA3839

Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural

Convection (Still Air). Available from www.jedec.org.Doc ID 15818 Rev 5133/147

205 STM32F205xx207xx参考手册

Part numberingSTM32F205xx, STM32F207xx7 Part numbering

Table 85.

Example:

Device family

Product type

Device subfamily

207= STM32F20x, connectivity, USB OTG FS/HS, camera

interface,, Ethernet

Pin count

V = 100 pins

Z = 144 pins

I = 176 pins(2)

Flash memory size

C = 256 Kbytes of Flash memory

E = 512 Kbytes of Flash memory

F = 768 Kbytes of Flash memory

G = 1024 Kbytes of Flash memory

Package

T = LQFP

H = UFBGA

Y = WLCSP

Temperature range

7 = Industrial temperature range, –40 to 105 °C.

Options

TR = tape and reel

1.The 66 pins is available on WLCSP package only.

2.The LQFP176 package is not in production. It is available only for development. Ordering information schemeSTM32F205RET6xxxFor a list of available options (speed, package, etc.) or for further information on any aspect

of this device, please contact your nearest ST sales office.

134/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxApplication block diagrams

Appendix A

A.1

Table 86.

Application block diagrams

Main applications versus package

Table86 gives examples of configurations for each package.

Main applications versus package for STM32F207xx microcontrollers(1)

64 pins100 pins144 pins176 pins

Config Config Config Config ConfigConfigConfig ConfigConfig ConfigConfigConfigConfig1231234123412

OTG

FSFSHS ULPI

USB 2

OTGFSFS

EthernetSPI/I2S2SPI/I2S3SDIO

SDIO8bits Data10bits Data12bits Data14bits DataNOR/RAM Muxed

FSMC

NOR/RAMNANDCF

CAN

--MIIRMII

XX------XX-----X

XX--------------XXXXX---X-XX

XXXX

XXXXXXXX-XX

XXXXXXX

SDIOor DCMI

XX-XX--X-XXXXX

XXXX

XXXX

XXXXXXXXX

XX

X

XXXXXXXXXXXXX

XXXXXXXXXXX

USB 1

SDIO or DCMISDIO or DCMISDIO or DCMISDIO or DCMISDIO or DCMISDIO or DCMI

DCMI

---XXXXXXXXXX

----

---X

---X

X--X-X

X*2219-X

-X

XXX-

XX*19X-

XX*22XX

XX*19XX

XX*22X-

XX*22XX

1.X*y: FSMC address limited to “y”.

Doc ID 15818 Rev 5135/147

205 STM32F205xx207xx参考手册

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

Application block diagramsSTM32F205xx, STM32F207xx

A.2 Application example with regulator off

205 STM32F205xx207xx参考手册

1.This mode is available only on UFBGA176 and WLCSP64+2 packages.

205 STM32F205xx207xx参考手册

1.This mode is available only on WLCSP64+2 package.

136/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxApplication block diagrams

A.3 USB OTG full speed (FS) interface solutions

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

1.STMPS2141STR/STULPI01B needed only if the application has to support a VBUS powered device. A

basic power switch can be used if 5 V are available on the application board.

Doc ID 15818 Rev 5137/147

205 STM32F205xx207xx参考手册

Application block diagramsSTM32F205xx, STM32F207xx

1.External voltage regulator only needed when building a VBUS powered device.

2.STMPS2141STR/STULPI01B needed only if the application has to support a VBUS powered device. A

basic power switch can be used if 5V are available on the application board.3.The same application can be developped using the OTG HS in FS mode to achieve enhanced

performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

A.4 USB OTG high speed (HS) interface solutions

205 STM32F205xx207xx参考手册

138/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xx

Application block diagrams

1.STMPS2141STR/STULPI01B needed only if the application has to support a VBUS powered device. A

basic power switch can be used if 5 V are available on the application board.

205 STM32F205xx207xx参考手册

1.It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F20x

with a 24 or 26MHz crystal when using USB HS. The above figure only shows an example of a possible connection.

Doc ID 15818 Rev 5139/147

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

Application block diagramsSTM32F205xx, STM32F207xx

A.5 Complete audio player solutions

Two solutions are offered, illustrated in Figure82 and Figure83.

Figure82 shows storage media to audio DAC/amplifier streaming using a software Codec. This solution implements an audio crystal to provide audio class I2S accuracy on the master clock (0.5% error maximum, see the Serial peripheral interface section in the reference manual for details).

205 STM32F205xx207xx参考手册

Figure83 shows storage media to audio Codec/amplifier streaming with SOF synchronization of input/output audio streaming using a hardware Codec.

205 STM32F205xx207xx参考手册

140/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxApplication block diagrams

205 STM32F205xx207xx参考手册

Doc ID 15818 Rev 5141/147

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

Application block diagramsSTM32F205xx, STM32F207xx1.I2S_SCK is the I2S serial clock to the external audio DAC (not to be confused with I2S_CK).

205 STM32F205xx207xx参考手册

1.I2S_SCK is the I2S serial clock to the external audio DAC (not to be confused with I2S_CK).

142/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxRevision historyRevision history

Table 87.

Date

05-Jun-2009 Document revision historyRevision1Initial release.

Document status promoted from Target specification to Preliminary

data.

In Table5: STM32F20x pin and ball definitions:

–Note4 updated

–VDD_SA and VDD_3 pins inverted (Figure11: STM32F20x LQFP100

pinout, Figure12: STM32F20x LQFP144 pinout and Figure13:

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

STM32F20x LQFP176 pinout corrected accordingly).

Section6.1: Package mechanical data changed to LQFP with no

exposed pad.

LFBGA144 package removed. STM32F203xx part numbers removed.

Part numbers with 128 and 256 Kbyte Flash densities added.

Encryption features removed.

PC13-TAMPER-RTC renamed to PC13-RTC_AF1 and PI8-TAMPER-

RTC renamed to PI8-RTC_AF2.Changes09-Oct-2009201-Feb-20103

Doc ID 15818 Rev 5143/147

205 STM32F205xx207xx参考手册

Revision historyTable 87.

DateSTM32F205xx, STM32F207xxDocument revision history (continued)RevisionChanges

Renamed high-speed SRAM, system SRAM.

Removed combination: 128KBytes Flash memory in LQFP144.Added UFBGA176 package. Added note 1 related to LQFP176 package in Table2, Figure13, and Table85.

Added information on ART accelerator and audio PLL (PLLI2S).Added Table4: USART feature comparison.

Several updates on Table5: STM32F20x pin and ball definitions and Table6: Alternate function mapping. ADC, DAC, oscillator, RTC_AF, WKUP and VBUS signals removed from alternate functions and

moved to the “other functions” column in Table5: STM32F20x pin and ball definitions.

TRACESWO added in Figure4: STM32F20x block diagram, Table5: STM32F20x pin and ball definitions, and Table6: Alternate function mapping.

XTAL oscillator frequency updated on cover page, in Figure4: STM32F20x block diagram and in Section2.2.12: External interrupt/event controller (EXTI).

Updated list of peripherals used for boot mode in Section2.2.14: Boot modes.

Added Regulator bypass mode in Section2.2.17: Voltage regulator, and Section5.3.3: Operating conditions at power-up / power-down in regulator bypass mode.

Updated Section2.2.18: Real-time clock (RTC), backup SRAM and backup registers.

Added NoteNote: in Section2.2.19: Low-power modes.

Added SPI TI protocol in Section2.2.28: Serial peripheral interface (SPI).

Added USB OTG_FS features in Section2.2.33: Universal serial bus on-the-go full-speed (OTG_FS).

Updated VCAP_1 and VCAP_2 capacitor value to 2.2μF in Figure18: Power supply scheme.

Removed DAC, modified ADC limitations, and updated I/O

compensation for 1.8 to 2.1V range in Table11: Limitations depending on the operating power supply range.

Added VBORL, VBORM, VBORH and IRUSH in Table14: Embedded reset and power control block characteristics.

Removed table Typical current consumption in Sleep mode with Flash memory in Deep power down mode. Merged typical and maximum current consumption sections and added Table15: Typical and maximum current consumption in Run mode, code with data processing running from Flash, Table16: Typical and maximum

current consumption in Run mode, code with data processing running from RAM, Table17: Typical and maximum current consumption in Sleep mode, Table18: Typical and maximum current consumptions in Stop mode, Table19: Typical and maximum current consumptions in Standby mode, and Table20: Typical and maximum current consumptions in VBAT mode.

Update Table29: Main PLL characteristics and added Section5.3.10: PLL spread spectrum clock generation (SSCG) characteristics.13-Jul-20104

144/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xxTable 87.

DateRevision historyDocument revision history (continued)RevisionChanges13-Jul-2010Added Note6 for CIO in Table40: I/O static characteristics.Updated Section5.3.16: TIM timer characteristics.Added TNRST_OUT in Table43: NRST pin characteristics.Updated Table46: I2C characteristics.Removed 8-bit data in and data out waveforms from Figure36: ULPI timing diagram.Removed note related to ADC calibration in Table60. Section5.3.18: 12-bit ADC characteristics: ADC characteristics tables merged into one single table; tables ADC conversion time and ADC accuracy removed.Updated Table61: DAC characteristics.Updated Section5.3.20: Temperature sensor characteristics and Section5.3.21: VBAT monitoring characteristics.Update Section5.3.24: Camera interface (DCMI) timing specifications.4

(continued)Added Section5.3.25: SD/SDIO MMC card host interface (SDIO)

characteristics, and Section5.3.26: RTC characteristics.

Added Section6.2: Thermal characteristics. Updated Table82:

LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm package mechanical data and Figure72: LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm, package outline.

Changed tape and reel code to TX in Table85: Ordering information scheme.

Added Table86: Main applications versus package for STM32F207xx microcontrollers. Updated figures in Appendix A.3: USB OTG full speed (FS) interface solutions and A.4: USB OTG high speed (HS) interface solutions. Updated Figure84: Audio player solution using PLL, PLLI2S, USB and 1 crystal and Figure85: Audio PLL (PLLI2S) providing accurate I2S clock.

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

Doc ID 15818 Rev 5145/147

205 STM32F205xx207xx参考手册

Revision historyTable 87.

DateSTM32F205xx, STM32F207xxDocument revision history (continued)RevisionChanges

Update I/Os in Section: Features.

Added WLCSP66(64+2) package. Added note 1 related to LQFP176 on cover page.

Added trademark for ART accelerator. Updated Section2.2.3: Adaptive real-time memory accelerator (ART Accelerator?).Updated Figure5: Multi-AHB matrix.

Added case of BOR inactivation using IRROFF on WLCSP devices in Section2.2.16: Power supply supervisor.

Reworked Section2.2.17: Voltage regulator to clarify regulator off modes. Renamed PDROFF, IRROFF in the whole document.Added Section2.2.20: VBAT operation.

Updated LIN and IrDA features for UART4/5 in Table4: USART feature comparison.

Table5: STM32F20x pin and ball definitions: Modified VDD_3 pin, and added note related to the FSMC_NL pin; renamed BYPASS-REG REGOFF, and add IRROFF pin; renamed USART4/5 UART4/5. USART4 pins renamed UART4.

Changed VSS_SA to VSS, and VDD_SA pin reserved for future use. Updated maximum HSE crystal frequency to 26MHz.

Section5.2: Absolute maximum ratings: Updated VIN minimum and maximum values and note for non-five-volt tolerant pins in Table7: Voltage characteristics. Updated IINJ(PIN) maximum values and related notes in Table8: Current characteristics.

Updated VDDA minimum value in Table10: General operating conditions.

Added Note2 Updated Maximum CPU frequency in Table11: Limitations depending on the operating power supply range, and added Figure20: Number of wait states versus fCPU and VDD range.Added brownout level 1, 2, and 3 thresholds in Table14: Embedded reset and power control block characteristics.

Changed fOSC_IN maximum value in Table24: HSE 4-26 MHz oscillator characteristics.

Changed fPLL_IN maximum value in Table29: Main PLL characteristics, and updated jitter parameters in Table30: PLLI2S (audio PLL) characteristics.

Section5.3.14: I/O port characteristics: updated VIH and VIL in Table40: I/O static characteristics.

Added Note1 below Table41: Output voltage characteristics.Updated RPD and RPU parameter description in Table51: USB OTG FS DC electrical characteristics.

Updated VREF+ minimum value in Table59: ADC characteristics.Updated Table64: Embedded internal reference voltage.

Removed Ethernet and USB2 for 64-pin devices in Table86: Main applications versus package for STM32F207xx microcontrollers.

Added A.2: Application example with regulator off, removed “OTG FS connection with external PHY” figure, updated Figure77, Figure78, and Figure80 to add STULPI01B.25-Nov-20105

146/147Doc ID 15818 Rev 5

205 STM32F205xx207xx参考手册

STM32F205xx, STM32F207xx

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve theright to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at anytime, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes noliability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of thisdocument refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party productsor services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of suchthird party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIEDWARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIEDWARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWSOF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOTRECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAININGAPPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVEGRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately voidany warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, anyliability of ST.

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

? 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 15818 Rev 5147/147

扩展:stm32f207参考手册 / stm32f205参考手册 / stm32f207编程参考

三 : STM32F205xx207xx参考手册

STM32F205xxSTM32F207xx

ARM-based 32-bit MCU, 150DMIPs, up to 1 MB Flash/128+4KB RAM,USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera

Preliminary data

Features

■■

Core: ARM 32-bit Cortex?-M3 CPU with Adaptive real-time accelerator (ART

Accelerator?) allowing 0-wait state execution performance from Flash memory, frequency up to 120MHz, memory protection unit,

150DMIPS/1.25DMIPS/MHz (Dhrystone 2.1)Memories

–Up to 1 Mbyte of Flash memory–Up to 128 + 4 Kbytes of SRAM

–Flexible static memory controller that

supports Compact Flash, SRAM, PSRAM, NOR and NAND memories

–LCD parallel interface, 8080/6800 modesClock, reset and supply management

–1.8 to 3.6 V application supply and I/Os–POR, PDR, PVD and BOR–4 to 26 MHz crystal oscillator

–Internal 16MHz factory-trimmed RC (1% accuracy)

–32kHz oscillator for RTC with calibration–Internal 32kHz RC with calibrationLow power

–Sleep, Stop and Standby modes

–VBAT supply for RTC, 20 × 32 bit backup registers, and optional 4 KB backup SRAM3 × 12-bit, 0.5 μs A/D converters–up to 24 channels

–up to 6 MSPS in triple interleaved mode2 × 12-bit D/A convertersGeneral-purpose DMA

–16-stream DMA controller with centralized FIFOs and burst supportUp to 17 timers

–Up to twelve 16-bit and two 32-bit timers, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder inputDebug mode

–Serial wire debug (SWD) & JTAG interfaces–Cortex-M3 Embedded Trace Macrocell?

1.Package not in production (for development only).■

■■■

Up to 140 I/O ports with interrupt capability:–Up to 136 fast I/Os up to 60MHz–Up to 138 5V-tolerant I/Os

Up to 15 communication interfaces

–Up to 3 × I2C interfaces (SMBus/PMBus)–Up to 4 USARTs and 2 UARTs (7.5 Mbit/s, ISO 7816 interface, LIN, IrDA, modem control)

–Up to 3 SPIs (30 Mbit/s), 2 with muxed I2S to achieve audio class accuracy via audio PLL or external PLL

–2 × CAN interfaces (2.0B Active)–SDIO interface

Advanced connectivity

–USB 2.0 full-speed device/host/OTG controller with on-chip PHY–USB 2.0 high-speed/full-speed

device/host/OTG controller with dedicated DMA, on-chip full-speed PHY and ULPI–10/100 Ethernet MAC with dedicated DMA: supports IEEE 1588v2 hardware, MII/RMII8- to 14-bit parallel camera interface: up to 27Mbyte/s at 27MHz or 48 Mbyte/s at 48 MHzCRC calculation unit, 96-bit unique IDAnalog true random number generator

Device summary

Part number

STM32F205RB, STM32F205RC, STM32F205RE, STM32F205RF, STM32F205RG, STM32F205VB, STM32F205VC, STM32F205VE, STM32F205VF STM32F205VG, STM32F205ZC, STM32F205ZE, STM32F205ZF, STM32F205ZG

STM32F207IC, STM32F207IE, STM32F207IF, STM32F207IG, STM32F207ZC, STM32F207ZE, STM32F207ZF, STM32F207ZG, STM32F207VC, STM32F207VE, STM32F207VF, STM32F207VG

Table 1.

Reference

STM32F205xx

STM32F207xx

November 2010Doc ID 15818 Rev 51/147

www.st.com

This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

ContentsSTM32F205xx, STM32F207xxContents

1

2Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1

2.2Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 13Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

2.2.6

2.2.7

2.2.8

2.2.9

2.2.10

2.2.11

2.2.12

2.2.13

2.2.14

2.2.15

2.2.16

2.2.17

2.2.18

2.2.19

2.2.20

2.2.21

2.2.22

2.2.23

2.2.24

2.2.25

2.2.26

2.2.27

2.2.28ARM? Cortex?-M3 core with embedded Flash and SRAM . . . . . . . . . 16Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Adaptive real-time memory accelerator (ART Accelerator?) . . . . . . . . 16Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 17True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . 17Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18FSMC (flexible static memory controller) . . . . . . . . . . . . . . . . . . . . . . . . 18Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 19External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 19Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . 23Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Universal synchronous/asynchronous receiver transmitters(UARTs/USARTs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xx2.2.29

2.2.30

2.2.31

2.2.32

2.2.33

2.2.34

2.2.35

2.2.36

2.2.37

2.2.38

2.2.39

2.2.40

2.2.41

2.2.42ContentsInter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28SDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Ethernet MAC interface with dedicated DMA and IEEE1588 support . 29Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . 29Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . 30Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 31ADCs (analog-to-digital converters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 32Embedded Trace Macrocell? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3

4

5Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.1

5.1.2

5.1.3

5.1.4

5.1.5

5.1.6

5.1.7Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2

5.3Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

5.3.6General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Operating conditions at power-up / power-down (regulator not bypassed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Operating conditions at power-up / power-down in regulatorbypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Embedded reset and power control block characteristics . . . . . . . . . . . 60Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Doc ID 15818 Rev 53/147

Contents5.3.7

5.3.8

5.3.9

5.3.10

5.3.11

5.3.12

5.3.13

5.3.14

5.3.15

5.3.16

5.3.17

5.3.18

5.3.19

5.3.20

5.3.21

5.3.22

5.3.23

5.3.24

5.3.25

5.3.26STM32F205xx, STM32F207xxInternal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72PLL spread spectrum clock generation (SSCG) characteristics . . . . . . 73Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 77I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8512-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 104VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 123SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 124RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1

6.2Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134Appendix AApplication block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.1

A.2

A.3

A.4

A.5Main applications versus package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Application example with regulator off. . . . . . . . . . . . . . . . . . . . . . . . . . . 136USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 137USB OTG high speed (HS) interface solutions. . . . . . . . . . . . . . . . . . . . 138Complete audio player solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1434/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxList of tablesList of tables

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

Table 8.

Table 9.

Table 10.

Table 11.

Table 12.

Table 13.

Table 14.

Table 15.

Table 16.

Table 17.

Table 18.

Table 19.

Table 20.

Table 21.

Table 22.

Table 23.

Table 24.

Table 25.

Table 26.

Table 27.

Table 28.

Table 29.

Table 30.

Table 31.

Table 32.

Table 33.

Table 34.

Table 35.

Table 36.

Table 37.

Table 38.

Table 39.

Table 40.

Table 41.

Table 42.

Table 43.

Table 44.

Table 45.Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1STM32F205xx and STM32F207xx features and peripheral counts . . . . . . . . . . . . . . . . . . 11Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27STM32F20x pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38Alternate function mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Limitations depending on the operating power supply range. . . . . . . . . . . . . . . . . . . . . . . 58Operating conditions at power-up / power-down (regulator not bypassed) . . . . . . . . . . . . 59Operating conditions at power-up / power-down in regulator bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 60Typical and maximum current consumption in Run mode, code with data processingrunning from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Typical and maximum current consumption in Run mode, code with data processing running from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Typical and maximum current consumption in Sleep mode. . . . . . . . . . . . . . . . . . . . . . . . 63Typical and maximum current consumptions in Stop mode. . . . . . . . . . . . . . . . . . . . . . . . 64Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 64Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . 65Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67Low-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73Flash memory characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75Flash memory endurance and data retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76EMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77ESD absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80I/O AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Characteristics of TIMx connected to the APB1 domain . . . . . . . . . . . . . . . . . . . . . . . . . . 83Characteristics of TIMx connected to the APB2 domain . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Doc ID 15818 Rev 55/147

List of tablesTable 46.

Table 47.

Table 48.

Table 49.

Table 50.

Table 51.

Table 52.

Table 53.

Table 54.

Table 55.

Table 56.

Table 57.

Table 58.

Table 59.

Table 60.

Table 61.

Table 62.

Table 63.

Table 64.

Table 65.

Table 66.

Table 67.

Table 68.

Table 69.

Table 70.

Table 71.

Table 72.

Table 73.

Table 74.

Table 75.

Table 76.

Table 77.

Table 78.

Table 79.

Table 80.

Table 81.

Table 82.

Table 83.

Table 84.

Table 85.

Table 86.

Table 87.STM32F205xx, STM32F207xxI2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85SCL frequency (fPCLK1= 30 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92USB OTG FS electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94Clock timing parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94ULPI timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Ethernet DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . . 96Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . . 96Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . . 97ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102TS characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 106Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 107Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 108Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 109Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 111Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113Synchronous non-multiplexed NOR/PSRAM read timings. . . . . . . . . . . . . . . . . . . . . . . . 114Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115Switching characteristics for PC Card/CF read and write cycles . . . . . . . . . . . . . . . . . . . 120Switching characteristics for NAND Flash read and write cycles . . . . . . . . . . . . . . . . . . . 123DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123SD / MMC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data. . . . . . . . . 127WLCSP64+2 - 0.400 mm pitch wafer level chip size package mechanical data . . . . . . . 128LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . 129LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 130LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm package mechanical data . 131UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data . 132Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133Ordering information scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134Main applications versus package for STM32F207xx microcontrollers . . . . . . . . . . . . . . 135Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1436/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxList of figuresList of figures

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.

Figure 22.

Figure 23.

Figure 24.

Figure 25.

Figure 26.

Figure 27.

Figure 28.

Figure 29.

Figure 30.

Figure 31.

Figure 32.

Figure 33.

Figure 34.

Figure 35.

Figure 36.

Figure 37.

Figure 38.

Figure 39.

Figure 40.

Figure 41.

Figure 42.

Figure 43.

Figure 44.

Figure 45.

Figure 46.Compatible board design: LQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Compatible board design: LQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Compatible board design: LQFP64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14STM32F20x block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Multi-AHB matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Startup in regulator bypass/regulator off mode: slow VDD slope - power-down reset risen after VCAP_1/VCAP_2 stabilization. . . . . . . . . . . . . . . . . . . . . . . . 22Startup in regulator bypass/regulator off mode: slow VDD slope - power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 22Sartup in regulator bypass/regulator off and internal reset off . . . . . . . . . . . . . . . . . . . . . . 22STM32F20x LQFP64 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33STM32F20x WLCSP64+2 ballout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33STM32F20x LQFP100 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34STM32F20x LQFP144 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35STM32F20x LQFP176 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36STM32F21xxx UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Pin input voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Number of wait states versus fCPU and VDD range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Typical application with an 8 MHz crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Typical application with a 32.768 kHz crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74PLL output clock waveforms in down spread mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83I2C bus AC waveforms and measurement circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91I2S master timing diagram (Philips protocol)(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . 93ULPI timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96Ethernet RMII timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 101Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 10112-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 105Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 106

Doc ID 15818 Rev 57/147

List of figuresFigure 47.

Figure 48.

Figure 49.

Figure 50.

Figure 51.

Figure 52.

Figure 53.

Figure 54.

Figure 55.

Figure 56.

Figure 57.

Figure 58.

Figure 59.

Figure 60.

Figure 61.

Figure 62.

Figure 63.

Figure 64.

Figure 65.

Figure 66.

Figure 67.

Figure 68.

Figure 69.

Figure 70.

Figure 71.

Figure 72.

Figure 73.

Figure 74.

Figure 75.

Figure 76.

Figure 77.

Figure 78.

Figure 79.

Figure 80.

Figure 81.

Figure 82.

Figure 83.

Figure 84.

Figure 85.

Figure 86.

Figure 87.STM32F205xx, STM32F207xxAsynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 107Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 109Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112Synchronous non-multiplexed NOR/PSRAM read timings. . . . . . . . . . . . . . . . . . . . . . . . 114Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115PC Card/CompactFlash controller waveforms for common memory read access. . . . . . 116PC Card/CompactFlash controller waveforms for common memory write access. . . . . . 117PC Card/CompactFlash controller waveforms for attribute memory readaccess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118PC Card/CompactFlash controller waveforms for attribute memory writeaccess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 119PC Card/CompactFlash controller waveforms for I/O space write access. . . . . . . . . . . . 120NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122NAND controller waveforms for common memory read access. . . . . . . . . . . . . . . . . . . . 122NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 123SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124SD default mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 127Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127WLCSP64+2 - 0.400 mm pitch wafer level chip size package outline . . . . . . . . . . . . . . . 128LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 129Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129LQFP144, 20 x 20 mm, 144-pin low-profile quadflat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm, package outline . . . . . . . . 131UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline . 132Regulator bypass/regulator off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136Regulator bypass/regulator off and internal reset off . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136USB OTG FS peripheral-only connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137USB OTG FS host-only connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137OTG FS connection dual-role with internal PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138USB OTG HS peripheral-only connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138USB OTG HS host-only connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139OTG HS connection dual-role with external PHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139Complete audio player solution 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Complete audio player solution 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Audio player solution using PLL, PLLI2S, USB and 1 crystal. . . . . . . . . . . . . . . . . . . . . . 141Audio PLL (PLLI2S) providing accurate I2S clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141Master clock (MCK) used to drive the external audio DAC. . . . . . . . . . . . . . . . . . . . . . . . 142Master clock (MCK) not used to drive the external audio DAC. . . . . . . . . . . . . . . . . . . . . 1428/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxIntroduction1 Introduction

This datasheet provides the description of the STM32F205xx and STM32F207xx lines of

microcontrollers. For more details on the whole STMicroelectronics STM32? family, please

refer to Section2.1: Full compatibility throughout the family.

The STM32F205xx and STM32F207xx datasheet should be read in conjunction with the

STM32F20x/STM32F21x reference manual.

For information on programming, erasing and protection of the internal Flash memory,

please refer to the STM32F20x/STM32F21x Flash programming manual.

The reference and Flash programming manuals are both available from the

STMicroelectronics website www.st.com.

For information on the Cortex?-M3 core please refer to the Cortex?-M3 Technical

Reference Manual, available from the www.61k.comwebsite at the following address:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.

Doc ID 15818 Rev 59/147

DescriptionSTM32F205xx, STM32F207xx2 Description

The STM32F205xx and STM32F207xx family is based on the high-performance ARM?

Cortex?-M3 32-bit RISC core operating at a frequency of up to 120 MHz. The family

incorporates high-speed embedded memories (Flash memory up to 1 Mbyte, up to

128Kbytes of system SRAM), up to 4Kbytes of backup SRAM, and an extensive range of

enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit

multi-AHB bus matrix.

The devices also feature an adaptive real-time memory accelerator (ART Accelerator?)

which allows to achieve a performance equivalent to 0 wait state program execution from

Flash memory at a CPU frequency up to 120MHz. This performance has been validated

using the CoreMark benchmark.

All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose

16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers.

a true number random generator (RNG). They also feature standard and advanced

communication interfaces. New advanced peripherals include an SDIO, an enhanced

flexible static memory control (FSMC) interface (for devices offered in packages of 100 pins

and more), and a camera interface for CMOS sensors.

●Up to three I2CsThree SPIs, two I2Ss. To achieve audio class accuracy, the I2S peripherals can be

clocked via a dedicated internal audio PLL or via an external PLL to allow

synchronization.

4 USARTs and 2 UARTs

An USB OTG full-speed and a USB OTG full-speed with high-speed capability (with the ULPI),

Two CANs

An SDIO interface

Ethernet and the camera interface available on STM32F207xx devices only.●●●●●

The STM32F205xx and STM32F207xx family operates in the –40 to +105°C temperature

range from a 1.8V to 3.6V power supply. A comprehensive set of power-saving mode

allows the design of low-power applications.

The STM32F205xx and STM32F207xx family offers devices in four packages ranging from

64 pins to 176 pins. The set of included peripherals changes with the device chosen.

These features make the STM32F205xx and STM32F207xx microcontroller family suitable

for a wide range of applications:

●Motor drive and application controlMedical equipmentIndustrial applications: PLC, inverters, circuit breakersPrinters, and scannersAlarm systems, video intercom, and HVACHome audio appliances

Figure4 shows the general block diagram of the device family.

10/147Doc ID 15818 Rev 5

Table 2.STM32F205xx and STM32F207xx features and peripheral counts

PeripheralsSTM32F205RxSTM32F205VxSTM32F205ZxSTM32F207VxSTM32F207ZxSTM32F207IxFlash memory in

Kbytes128256512768102412825651276810242565127681024256512768102425651276810242565127681024SRAM in System6496649696

Kbytes(48+16)(80+16)128(112+16)(48+16)(80+16)128 (112+16)(80+16)128 (112+16)128 (112+16)

Backup4444

FSMC memory

controllerNoYes

EthernetNoYes

General-

purpose10

TimersAdvanced

-control2

Doc ID 15818 Rev 5Basic2

Random number

generatorYes

SPI / (I2S)3 (2)

IC3

USART4

Comm. UART2

interfacesUSB OTG

FS

USB OTG 1HS/FS1FS, 1HS/FS

HS

CAN2

Camera interfaceNoYes

GPIOs51821148211414012-bit ADC3

Number of channels16162416242412-bit DACYes

Number of channels2

11/147STM32F205xx, STM32F207xxDescription

12/147Table 2.STM32F205xx and STM32F207xx features and peripheral counts (continued)

PeripheralsSTM32F205RxSTM32F205VxSTM32F205ZxSTM32F207VxSTM32F207ZxSTM32F207IxMaximum CPU

frequency 120 MHz

Operating voltage 1.8 V to 3.6 V

Operating Ambient temperatures: –40 to +85 °C /–40 to +105 °C

temperaturesJunction temperature: –40 to + 125 °C

LQFP64PackageWLCSP64+2LQFP100LQFP144LQFP100LQFP144LQFP176

UFBGA176

1.Package not in production and available for development only.

Doc ID 15818 Rev 5DescriptionSTM32F205xx, STM32F207xx

STM32F205xx, STM32F207xxDescription

2.1 Full compatibility throughout the family

The STM32F205xx and STM32F207xx constitute the STM32F20x family whose members

are fully pin-to-pin, software and feature compatible, allowing the user to try different

memory densities and peripherals for a greater degree of freedom during the development

cycle.

The STM32F205xx and STM32F207xx devices maintain a close compatibility with the

whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The

STM32F205xx and STM32F207xx, however, are not drop-in replacements for the

STM32F10xxx devices: the two families do not have the same power scheme, and so their

power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F20x

family remains simple as only a few pins are impacted.

Figure1 compatible board design between the STM32F20x and the STM32F10xxx family.

Doc ID 15818 Rev 513/147

Description

STM32F205xx, STM32F207xx14/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxDescription

2.2 Device overview

Doc ID 15818 Rev 515/147

DescriptionSTM32F205xx, STM32F207xx2.2.1 ARM? Cortex?-M3 core with embedded Flash and SRAM

The ARM Cortex-M3 processor is the latest generation of ARM processors for embedded

systems. It was developed to provide a low-cost platform that meets the needs of MCU

implementation, with a reduced pin count and low-power consumption, while delivering

outstanding computational performance and an advanced response to interrupts.

The ARM Cortex-M3 32-bit RISC processor features exceptional code-efficiency, delivering

the high-performance expected from an ARM core in the memory size usually associated

with 8- and 16-bit devices.

With its embedded ARM core, the STM32F205xx and STM32F207xx family is compatible

with all ARM tools and software.

Figure 1 shows the general block diagram of the STM32F20x family.

2.2.2 Memory protection unit

The memory protection unit (MPU) is used to separate the processing of tasks from the data

protection. The MPU can manage up to 8 protection areas that can all be further divided up

into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes

of addressable memory.

The memory protection unit is especially helpful for applications where some critical or

certified code has to be protected against the misbehavior of other tasks. It is usually

managed by an RTOS (real-time operating system). If a program accesses a memory

location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS

environment, the kernel can dynamically update the MPU area setting, based on the

process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

2.2.3 Adaptive real-time memory accelerator (ART Accelerator?)

The ART Accelerator? is a memory accelerator which is optimized for STM32 industry-

standard ARM? Cortex?-M3 processors. It balances the inherent performance advantage

of the ARM Cortex-M3 over Flash memory technologies, which normally requires the

processor to wait for the Flash memory at higher operating frequencies.

To release the processor full 150 DMIPS performance at this frequency, the accelerator

implements an instruction prefetch queue and branch cache which increases program

execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the

performance achieved thanks to the ART accelerator is equivalent to 0 wait state program

execution from Flash memory at a CPU frequency up to 120MHz.

2.2.4 Embedded Flash memory

The STM32F20x devices embed a 128-bit wide Flash memory of 128 Kbytes, 256 Kbytes,

512 Kbytes, 768 Kbytes or 1 Mbytes available for storing programs and data.

16/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxDescription

2.2.5 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

2.2.6 True random number generator (RNG)

All STM32F2xxx products embed a true RNG that delivers 32-bit random numbers

produced by an integrated analog circuit.

2.2.7 Embedded SRAM

All STM32F20x products embed up to 128 Kbytes of system SRAM accessed (read/write) at

CPU clock speed with 0 wait states, plus 4 Kbytes of backup SRAM.

2.2.8 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

Doc ID 15818 Rev 517/147

DescriptionSTM32F205xx, STM32F207xx2.2.9 DMA

The flexible 16-stream general-purpose DMAs (8 streams for DMA1 and 8 streams for

DMA2) are able to manage memory-to-memory, peripheral-to-memory and memory-to-

peripheral transfers. They share some centralized FIFOs for APB/AHB peripherals, support

burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB)

and performance.

The two DMA controllers support circular buffer management, so that no specific code is

needed when the controller reaches the end of the buffer. The two DMA controllers also

have a double buffering feature, which automates the use and switching of two memory

buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software

trigger on each stream. Configuration is made by software and transfer sizes between

source and destination are independent.

The DMA can be used with the main peripherals:

●SPI and I2SI2CUSART and UARTGeneral-purpose, basic and advanced-control timers TIMxDACSDIOCamera interface (DCMI)ADC.

2.2.10 FSMC (flexible static memory controller)

The FSMC is embedded in the STM32F205xx and STM32F207xx family. It has four Chip

Select outputs supporting the following modes: PCCard/Compact Flash, SRAM, PSRAM,

NOR Flash and NAND Flash.

Functionality overview:

●Write FIFOCode execution from external memory except for NAND Flash and PC CardThe targeted frequency, fCLK, is equal to HCLK/2, so external access is at 60 MHz

when HCLK is at 120 MHz and external access is at 30 MHz when HCLK is at 60 MHz

LCD parallel interface

The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It

supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to

specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-

effective graphic applications using LCD modules with embedded controllers or high

performance solutions using external controllers with dedicated acceleration.

18/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxDescription

2.2.11 Nested vectored interrupt controller (NVIC)

The STM32F205xx and STM32F207xx embed a nested vectored interrupt controller able to

handle up to 87 maskable interrupt channels (not including the 16 interrupt lines of the

Cortex?-M3) and 16 priority levels.

●Closely coupled NVIC gives low-latency interrupt processingInterrupt entry vector table address passed directly to the coreClosely coupled NVIC core interfaceAllows early processing of interruptsProcessing of late arriving, higher-priority interruptsSupport tail chainingProcessor state automatically savedInterrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt

latency.

2.2.12 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 23 edge-detector lines used to generate

interrupt/event requests. Each line can be independently configured to select the trigger

event (rising edge, falling edge, both) and can be masked independently. A pending register

maintains the status of the interrupt requests. The EXTI can detect an external line with a

pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected

to the 16 external interrupt lines.

2.2.13 Clocks and startup

System clock selection is performed on startup, however, the 16 MHz internal RC oscillator

is selected as the default CPU clock on reset. An external 4-26 MHz clock can be selected,

in which case it is monitored for failure. If failure is detected, the system automatically

switches back to the internal RC oscillator. A software interrupt is generated if enabled.

Similarly, full interrupt management of the PLL clock entry is available when necessary (for

example if an indirectly used external oscillator fails).

The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full

temperature range.

The advanced clock controller clocks the core and all peripherals using a single crystal or

oscillator. In particular, the ethernet and USB OTG FS peripherals can be clocked by the

system clock.

Several prescalers and PLLs allow the configuration of the two AHB buses, the high-speed

APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two

AHB buses is 120MHz and the maximum frequency the high-speed APB domains is

60MHz. The maximum allowed frequency of the low-speed APB domain is 30MHz.

In order to achieve audio class performance, a specific crystal can be used. In this case, the

I2S master clock can generate all standard sampling frequencies from 8kHz to 96kHz.

Doc ID 15818 Rev 519/147

DescriptionSTM32F205xx, STM32F207xx2.2.14 Boot modes

At startup, boot pins are used to select one out of three boot options:

●Boot from user Flashboot from system memoryBoot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by

using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB6), USB

OTG FS in Device mode (PA9/PA11/PA12) through DFU (device firmware upgrade).

2.2.15 Power supply schemes

●VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when

enabled), provided externally through VDD pins. On WLCSP package, VDD ranges from

1.65 to 3.6V.

VSSA, VDDA = 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks,

RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.

VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup

registers (through power switch) when VDD is not present.●●

2.2.16 Power supply supervisor

The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry

coupled with a Brownout reset (BOR) circuitry. At power-on, BOR is always active, and

ensures proper operation starting from 1.8V. After the 1.8V BOR threshold is reached, the

option byte loading process starts, either to confirm or modify default thresholds, or to

disable BOR permanently. Three BOR thresholds are available through option bytes.

The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or

VBOR, without the need for an external reset circuit. On devices in WLCSP package, BOR

can be inactivated by setting IRROFF to VDD (see Section2.2.17: Voltage regulator).

The device also features an embedded programmable voltage detector (PVD) that monitors

the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be

generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher

than the VPVD threshold. The interrupt service routine can then generate a warning

message and/or put the MCU into a safe state. The PVD is enabled by software.

2.2.17 Voltage regulator

The regulator has five operating modes:

●Regulator on

–Main regulator mode (MR)Low power regulator (LPR)Power-down

Regulator bypass/regulator off

Regulator bypass/regulator off and internal reset off●Regulator off––

20/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxDescription

Regulator on

These modes are activated by default on LQFP packages. On WLCPS66 and UFBGA176,

they are activated by setting REGOFF pin to VSS. VDD minimum value is 1.8V.

There are three regulator on modes:

●MR is used in the nominal regulation mode (Run)LPR is used in the Stop modes7Power-down is used in Standby mode:

The regulator output is in high impedance: the kernel circuitry is powered down,

inducing zero consumption (but the contents of the registers and SRAM are lost).

Regulator off

●Regulator bypass/regulator off

This mode is activated by setting REGOFF pin to VDD. It is available only on the

UFBGA and WLCSP packages.

The regulator bypass/regulator off mode allows to supply externally a 1.2V voltage

source through VCAP_1 and VCAP_2 pins, in addition to VDD.

VDD minimum value is 1.8V.

The following conditions must be respected in Regulator bypass mode:

–VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection between power domains. If the time for VCAP_1 and VCAP_2 to reach 1.08V is faster than the time for VDD to

reach 1.8V, then PA0 should be connected to the NRST pin (see Figure6).

Otherwise, PA0 should be asserted low externally until VDD reaches 1.8V (see

Figure7).

In regulator bypass only mode, PA0 cannot be used as a GPIO pin.

●Regulator bypass/regulator off and internal reset off

This mode is activated by setting IRROFF pin to VDD. IRROFF cannot be activated in

conjunction with REGOFF. This mode is available only on the WLCSP package. It

allows to supply externally a 1.2V voltage source through VCAP_1 and VCAP_2 pins, in

addition to VDD.

VDD minimum value is 1.65V.

The following conditions must be respected in Regulator bypass mode (see Figure8):

–VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection between power domains. External reset should be used to cover both conditions: until VCAP_1 and VCAP_2 reach 1.08V and until VDD reaches 1.65V

PA0 can be used as a standard GPIO pin.

Doc ID 15818 Rev 521/147

DescriptionFigure 6.STM32F205xx, STM32F207xxStartup in regulator bypass/regulator off mode: slow VDD slope

Figure 7.Startup in regulator bypass/regulator off mode: slow VDD slope

22/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxDescription

2.2.18 Real-time clock (RTC), backup SRAM and backup registers

The backup domain of the STM32F205xx and STM32F207xx includes:

●The real-time clock (RTC) 4 Kbytes of backup SRAM20 backup registers

The RTC provides a set of continuously running counters which can be used with suitable

software to provide a clock calendar function, an alarm interrupt and a periodic interrupt. It is

clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC

oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a

typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to

compensate for any natural quartz deviation.

The RTC features calendar registers with seconds, minutes, hours, week day, date, month,

year. Two alarm registers are used to generate an alarm at a specific time and calendar

fields can be independently masked for alarm comparison. To generate a periodic interrupt,

a 16-bit programmable binary auto-reload downcounter with programmable resolution is

available and allows automatic wakeup and periodic alarms from every 120 μs to every 36

hours.

A 20-bit prescaler is used for the time base clock. It is by default configured to generate a

time base of 1 second from a clock at 32.768 kHz.

The backup SRAM size is 4 Kbytes and can be enabled by software. When the backup RAM

is enabled the power consumption in Standby or VBAT mode is slightly higher (see

Section2.2.19: Low-power modes).

The backup registers are 32-bit registers used to store 80 bytes of user application data

when VDD power is not present. Backup registers are not reset by a system, a power reset,

or when the device wakes up from the Standby mode (see Section2.2.19: Low-power

modes).

The RTC, backup RAM and backup registers are supplied through a switch that takes power

from either the VDD supply when present or the VBAT pin.

2.2.19 Low-power modes

The STM32F205xx and STM32F207xx support three low-power modes to achieve the best

compromise between low power consumption, short startup time and available wakeup

sources:

●Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can

wake up the CPU when an interrupt/event occurs.

●Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of

SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC

Doc ID 15818 Rev 523/147

DescriptionSTM32F205xx, STM32F207xxand the HSE crystal oscillators are disabled. The voltage regulator can also be put

either in normal or in low-power mode.

The device can be woken up from the Stop mode by any of the EXTI line. The EXTI line

source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /

tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup.

●Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal

voltage regulator is switched off so that the entire 1.2 V domain is powered off. The

PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering

Standby mode, the SRAM and register contents are lost except for registers in the

backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,

a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event

occurs.

Note:1The RTC, the IWDG, and the corresponding clock sources are not stopped when the device

enters the Stop or Standby mode.

2.2.20 VBAT operation

The VBAT pin allows to power the device VBAT domain from an external battery or an

external supercapacitor.

VBAT operation is activated when VDD is not present.

Note:When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events

do not exit it from VBAT operation.

2.2.21 Timers and watchdogs

The STM32F205xx and STM32F207xx devices include two advanced-control timers, eight

general-purpose timers, two basic timers and two watchdog timers.

Table3 compares the features of the advanced-control, general-purpose and basic timers.

Table 3.Timer feature comparison

DMA Capture/Max Max request compare interface timer outputgenerationchannelsclockclock

Yes4Yes60 MHz120

MHz

60

MHz

60

MHz

60

MHz Counter Counter Prescaler Timer typeTimerresolutiontypefactorAdvanced-TIM1, controlTIM8TIM2, TIM5TIM3, TIM4TIM6, TIM7Up, Any integer Down, between 1 Up/downand 65536Up, Any integer Down, between 1 Up/downand 65536Up, Any integer Down, between 1 Up/downand 65536UpAny integer between 1

and 6553616-bit32-bitYes4No30 MHzGeneral purpose16-bitYes4No30 MHzBasic16-bitYes0No30 MHz

24/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxTable 3.Timer feature comparison (continued)Description

Counter Counter Prescaler Timer typeTimerresolutiontypefactor

Any integer

between 1

and 65536

Any integer

between 1

and 65536

Any integer

between 1

and 65536

Any integer

between 1

and 65536DMA Capture/Max Max request compare interface timer outputgenerationchannelsclockclockNo2No60 MHz120 MHz120 MHz60 MHz60 MHzTIM916-bitUpGeneral purposeTIM10, TIM1116-bitUpNo1No60 MHzTIM1216-bitUpNo2No30 MHzTIM13, TIM1416-bitUpNo1No30 MHz

Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

●Input captureOutput comparePWM generation (edge- or center-aligned modes)One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-100%).

The TIM1 and TIM8 counters can be frozen in debug mode. Many of the advanced-control timer features are shared with those of the standard TIMx timers which have the same architecture. The advanced-control timer can therefore work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32F20x devices (see Table3 for differences).

●TIM2, TIM3, TIM4, TIM5

The STM32F20x include 4 full-featured general-purpose timers. TIM2 and TIM5 are 32-bit timers, and TIM3 and TIM4 are 16-bit timers. The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 32-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.Doc ID 15818 Rev 525/147

DescriptionSTM32F205xx, STM32F207xxThe TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the

other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the

Timer Link feature for synchronization or event chaining.

The counters of TIM2, TIM3, TIM4, TIM5 can be frozen in debug mode. Any of these

general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are

capable of handling quadrature (incremental) encoder signals and the digital outputs

from 1 to 4 hall-effect sensors.

●TIM10, TIM11 and TIM9

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM10 and TIM11 feature one independent channel, whereas TIM9 has two

independent channels for input capture/output compare, PWM or one-pulse mode

output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured

general-purpose timers. They can also be used as simple time bases.

●TIM12, TIM13 and TIM14

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM13 and TIM14 feature one independent channel, whereas TIM12 has two

independent channels for input capture/output compare, PWM or one-pulse mode

output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured

general-purpose timers.

They can also be used as simple time bases.

2.2.22 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be

used as a generic 16-bit time base.

2.2.23 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is

clocked from an independent 32 kHz internal RC and as it operates independently from the

main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog

to reset the device when a problem occurs, or as a free-running timer for application timeout

management. It is hardware- or software-configurable through the option bytes.

The counter can be frozen in debug mode.

2.2.24 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It

can be used as a watchdog to reset the device when a problem occurs. It is clocked from the

main clock. It has an early warning interrupt capability and the counter can be frozen in

debug mode.

26/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxDescription

2.2.25 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard

downcounter. It features:

●●●●

A 24-bit downcounterAutoreload capability

Maskable system interrupt generation when the counter reaches 0Programmable clock source

2.2.26 I2C bus

Up to three I2C bus interfaces can operate in multimaster and slave modes. They can

support the Standard- and Fast-modes. They support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

2.2.27 Universal synchronous/asynchronous receiver transmitters

(UARTs/USARTs)

The STM32F205xx and STM32F207xx embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3 and USART6) and two universal asynchronous receiver transmitters (UART4 and UART5).

These six interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to

communicate at speeds of up to 7.5 Mbit/s. The other available interfaces communicate at up to 3.75 Mbit/s.

USART1, USART2, USART3 and USART6 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

Table 4.

USART feature comparison

Max. baud rate Max. baud rate

Smartcard in Mbit/s in Mbit/s APB (ISO7816)(oversampling (oversampling mapping

by 16)by 8)

X

3.75

7.5

APB2

(max. 60MHz)APB1 (max. 30MHz)APB1 (max. 30MHz)

USART Modem SPI

LINirDA

namefeatures(RTS/CTS)master

USART1XXXXX

USART2XXXXXX1.873.75

USART3XXXXXX1.873.75

Doc ID 15818 Rev 527/147

DescriptionTable 4.USART feature comparison (continued)STM32F205xx, STM32F207xxUSART Modem SPI LINirDAnamefeatures(RTS/CTS)masterMax. baud rate Max. baud rate Smartcard in Mbit/s in Mbit/s APB (ISO7816)(oversampling (oversampling mapping

by 16)by 8)

-1.873.75APB1 (max.

30MHz)

APB1

(max.

30MHz)

APB2

(max.

60MHz)UART4X-X-XUART5X-XD-X-3.753.75USART6XXXXXX3.757.5

2.2.28 Serial peripheral interface (SPI)

The STM32F20x feature up to three SPIs in slave and master modes in full-duplex and

simplex communication modes. SPI1 can communicate at up to 30 Mbits/s, SPI2 and SPI3 can communicate at up to 15 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.

The SPI interface can be configured to operate in TI mode for communications in master

mode and slave mode.

2.2.29 Inter-integrated sound (I2S)

Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can be

operated in master or slave mode, and can be configured to operate with a 16-/32-bit

resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 96 kHz are supported. When either or both of the I2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling

frequency.

2.2.30 SDIO

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System

Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with the SD Memory Card Specification Version 2.0.

The SDIO Card Specification Version 2.0 is also supported with two different databus

modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1.28/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxDescription

2.2.31 Ethernet MAC interface with dedicated DMA and IEEE1588 support

Peripheral available only on the STM32F207xx devices.

The STM32F207xx devices provide an IEEE-802.3-2002-compliant media access controller

(MAC) for ethernet LAN communications through an industry-standard medium-

independent interface (MII) or a reduced medium-independent interface (RMII). The

STM32F207xx requires an external physical interface device (PHY) to connect to the

physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F207xx MII

port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz

(MII) or 50 MHz (RMII) output from the STM32F207xx.

The STM32F207xx includes the following features:

●Supports 10 and 100 Mbit/s ratesDedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors (see the STM32F20x and STM32F21x reference manual for

details)

Tagged MAC frame support (VLAN support)

Half-duplex (CSMA/CD) and full-duplex operation

MAC control sublayer (control frames) support

32-bit CRC generation and removal

Several address filtering modes for physical and multicast address (multicast and group addresses)

32-bit status code for each transmitted or received frame

Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes, that is 4 Kbytes in total

Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input

Triggers interrupt when system time becomes greater than target time●●●●●●●●●

2.2.32 Controller area network (CAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1

Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as

extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive

FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one

CAN is used). The 256 bytes of SRAM which are allocated for each CAN are not shared

with any other peripheral.

2.2.33 Universal serial bus on-the-go full-speed (OTG_FS)

The STM32F205xx and STM32F207xx embed an USB OTG full-speed device/host/OTG

peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the

USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable

endpoint setting and supports suspend/resume. The USB OTG full-speed controller

Doc ID 15818 Rev 529/147

DescriptionSTM32F205xx, STM32F207xxrequires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE

oscillator. The major features are:

●Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizingSupports the session request protocol (SRP) and host negotiation protocol (HNP)4 bidirectional endpoints8 host channels with periodic OUT supportHNP/SNP/IP inside (no need for any external resistor)For OTG/Host modes, a power switch is needed in case bus-powered devices are connectedInternal FS OTG PHY support External FS OTG PHY support through an I2C connection

2.2.34 Universal serial bus on-the-go high-speed (OTG_HS)

The STM32F205xx and STM32F207xx devices embed a USB OTG high-speed (up to

480Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and

high-speed operations. It integrates the transceivers for full-speed operation (12MB/s) and

features a UTMI low-pin interface (ULPI) for high-speed operation (480MB/s). When using

the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.

The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG

1.0 specification. It has software-configurable endpoint setting and supports

suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock

that is generated by a PLL connected to the HSE oscillator. The major features are:

●Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizingSupports the session request protocol (SRP) and host negotiation protocol (HNP)6 bidirectional endpoints12 host channels with periodic OUT supportInternal FS OTG PHY support External FS OTG PHY support through an I2C connectionExternal HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using

the 60MHz output.

Internal USB DMA

HNP/SNP/IP inside (no need for any external resistor)

for OTG/Host modes, a power switch is needed in case bus-powered devices are connected●●●

2.2.35 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I2S application. It allows to

achieve error-free I2S sampling clock accuracy without compromising on the CPU

performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I2S sample rate change without

disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging

from 8KHz to 96KHz.

30/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxDescription

In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S

flow with an external PLL (or Codec output).

2.2.36 Digital camera interface (DCMI)

The camera interface is not available in STM32F205xx devices.

STM32F207xx products embed a camera interface that can connect with camera modules

and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The

camera interface can sustain up to 27 Mbyte/s at 27 MHz or 48Mbyte/s at 48 MHz. It

features:

●Programmable polarity for the input pixel clock and synchronization signalsParallel data communication can be 8-, 10-, 12- or 14-bitSupports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)Supports continuous mode or snapshot (a single frame) modeCapability to automatically crop the image

2.2.37 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain,

with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)

or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog

alternate functions. All GPIOs are high-current-capable and have speed selection to better

manage internal noise, power consumption and electromagnetic emission.

The I/O alternate function configuration can be locked if needed by following a specific

sequence in order to avoid spurious writing to the I/Os registers.

To provide fast I/O handling, the GPIOs are on the fast AHB1 bus with a clock up to

120MHz that leads to a maximum I/O toggling speed of 60 MHz.

2.2.38 ADCs (analog-to-digital converters)

Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16

external channels, performing conversions in the single-shot or scan mode. In scan mode,

automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

●Simultaneous sample and holdInterleaved sample and hold

The ADC can be served by the DMA controller. An analog watchdog feature allows very

precise monitoring of the converted voltage of one, some or all selected channels. An

interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the timers TIM1, TIM2, TIM3, TIM4, TIM5 and TIM8 can be

internally connected to the ADC start trigger and injection trigger, respectively, to allow the

application to synchronize A/D conversion and timers.

Doc ID 15818 Rev 531/147

DescriptionSTM32F205xx, STM32F207xx2.2.39 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two

analog voltage signal outputs. The design structure is composed of integrated resistor

strings and an amplifier in inverting configuration.

This dual digital Interface supports the following features:

●two DAC converters: one for each output channel8-bit or 12-bit monotonic outputleft or right data alignment in 12-bit modesynchronized update capabilitynoise-wave generationtriangular-wave generationdual DAC channel independent or simultaneous conversionsDMA capability for each channelexternal triggers for conversioninput voltage reference VREF+

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through

the timer update outputs that are also connected to different DMA streams.

2.2.40 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The

conversion range is between 1.8 V and 3.6 V. The temperature sensor is internally

connected to the ADC1_IN16 input channel which is used to convert the sensor output

voltage into a digital value.

As the offset of the temperature sensor varies from chip to chip due to process variation, the

internal temperature sensor is mainly suitable for applications that detect temperature

changes instead of absolute temperatures. If an accurate temperature reading is needed,

then an external temperature sensor part should be used.

2.2.41 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug

port that enables either a serial wire debug or a JTAG probe to be connected to the target.

The JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a

specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

2.2.42 Embedded Trace Macrocell?

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data

flow inside the CPU core by streaming compressed data at a very high rate from the

STM32F20x through a small number of ETM pins to an external hardware trace port

analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or

any other high-speed channel. Real-time instruction and data flow activity can be recorded

and then formatted for display on the host computer that runs the debugger software. TPA

hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

32/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxPinouts and pin description

3 Pinouts and pin description

Figure 9.

STM32F20x LQFP64 pinout

6$$???????633???????0"??????0"??????"//4??????0"??????0"??????0"??????0"??????0"??????0$??????0#????????0#????????0#????????0!????????0!??????

6"!4

0#??????24#?!&??0#??????/3#?????).0#??????/3#?????/54

0(????/3#?).0(????/3#?/54

.2340#??0#??0#??0#??633!6$$!0!????7+50

0!??0!??

64636261605958575655545352515049

481

472

463

454

445

436

427

418

,1&0????409

3910

3811

3712

3613

3514

3415

3316

6$$???????6#!0???0!????????0!????????0!????????0!????????0!??????0!??????0#??????0#??????0#??????0#??????0"????????0"????????0"????????0"??????

0!??633???6$$???0!??0!??0!??0!??0#??0#??0"??0"??0"??0"????0"????6#!0???6$$???

AI??????????B

1.Top view.

Doc ID 15818 Rev 533/147

Pinouts and pin description

Figure 11.STM32F20x LQFP100 pinout

STM32F205xx, STM32F207xx

0%??0%??0%??0%??0%??6"!4

0#??????24#?!&??0#??????/3#?????).0#??????/3#?????/54

633???6$$???

0(????/3#?).0(????/3#?/54

.2340#??0#??0#??0#??6$$?????633!62%&??6$$!0!????7+50

0!??0!????????????????????????????????????????????????????????????????????????????????????

??????????????????????????????????????????????????????????????????????????????????????????????????????

????????????????????????????????????????????????????????????????????????????????????????????????????

6$$???2&50%??????0%??????0"??????0"??????"//4??????0"??????0"??????0"??????0"??????0"??????0$??????0$??????0$??????0$??????0$??????0$??????0$??????0$??????0#????????0#????????0#????????0!????????0!??????

,1&0??????

6$$?????633???6#!0???????0!??????????0!??????????0!??????????0!??????????0!????????0!????????0#??????0#??????0#??????0#??????0$????????0$????????0$????????0$????????0$????????0$????????0$??????0$??????0"????????0"????????0"????????0"????????

0!??633???6$$???0!??0!??0!??0!??0#??0#??0"??0"??0"??0%??0%??0%??0%????0%????0%????0%????0%????0%????0"????0"????6#!0???6$$???????????????????????????????????????????????????????????????????????????????????????????????????????

AI??????????D

1.RFU means “reserved for future use”.

34/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xx

Pinouts and pin description

1.RFU means “reserved for future use”.

Doc ID 15818 Rev 5

35/147

Pinouts and pin description

STM32F205xx, STM32F207xx

1.Package not in production and available for development only.2.RFU means “reserved for future use”.

36/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xx

Pinouts and pin description

1.RFU means “reserved for future use”.2.Top view.

Doc ID 15818 Rev 537/147

Pinouts and pin descriptionTable 5.

WLCSP64+2

STM32F205xx, STM32F207xx

STM32F20x pin and ball definitions

I / O Level(2)

Pins

UFBGA176

Type(1)

LQFP100

LQFP144

LQFP176

Main function(3) (after reset)

LQFP64

Pin nameAlternate functions

Other functions

-----1-234-----------------

-----A9-B8B9C9-----------

123456-789-----------

123456-789-----

12345678910

A2A1B1B2B3C1D2D1

PE2PE3PE4PE5PE6VBATPI8(4)PC13(4)PC15(4)-OSC32_OUT(6)

PI9PI10PI11VSS_13VDD_13PF0PF1PF2PF3(6)PF4(6)PF5(6)VSS_5VDD_5PF6(6)PF7(6)PF8(6)PF9(6)

I/OFTI/OFTI/OFTI/OFTI/OFTSI/OFTI/OFT

PE2PE3PE4PE5PE6VBATPI8(5)PC13(5)PC14(5)PC15(5)PI9PI10PI11VSS_13VDD_13PF0PF1PF2PF3PF4PF5VSS_5VDD_5PF6PF7PF8PF9

TRACECLK/ FSMC_A23 /

ETH_MII_TXD3TRACED0/FSMC_A19TRACED1/FSMC_A20 /

DCMI_D4TRACED2 / FSMC_A21 / TIM9_CH1 / DCMI_D6TRACED3 / FSMC_A22 / TIM9_CH2 / DCMI_D7

RTC_AF2RTC_AF1OSC32_INOSC32_OUT

CAN1_RX ETH_MII_RX_EROTG_HS_ULPI_DIR

E1PC14(4)-OSC32_IN(6)I/OFTF1

I/OFTI/OFTI/OFTI/OFTSSI/OFTI/OFTI/OFTI/OFTI/OFTI/OFTSSI/OFTI/OFTI/OFTI/OFT

11D312E313E41415

F2F3

1016E21117H31218H213191420

J2J3

FSMC_A0 / I2C2_SDAFSMC_A1 / I2C2_SCLFSMC_A2 / I2C2_SMBA

FSMC_A3FSMC_A4FSMC_A5

ADC3_IN9ADC3_IN14ADC3_IN15

1521K3

H9101622G2-----111723G3----1824K21925K120262127

L3L2

TIM10_CH1 / FSMC_NIORDTIM11_CH1/FSMC_NREG

TIM13_CH1 / FSMC_NIOWRTIM14_CH1 / FSMC_CD

ADC3_IN4ADC3_IN5ADC3_IN6ADC3_IN7

38/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxTable 5.

WLCSP64+2

Pinouts and pin description

STM32F20x pin and ball definitions (continued)

I / O Level(2)

Pins

UFBGA176

Type(1)

LQFP100

LQFP144

LQFP176

Main function(3) (after reset)

LQFP64

Pin nameAlternate functions

Other functions

-56789

--2228L1

PF10(6)PH0(6)-OSC_INPH1(6)-OSC_OUT

NRSTPC0(6)PC1(6)

(6)

I/OFTI/OFTI/OFTI/OI/OFTI/OFT

PF10PH0PH1NRSTPC0PC1

FSMC_INTRADC3_IN8OSC_INOSC_OUT

E9122329G1F9132430H1E8142531

J1

OTG_HS_ULPI_STP

ETH_MDCSPI2_MISO / OTG_HS_ULPI_DIR / ETH_MII_TXD2SPI2_MOSI / I2S2_SD / OTG_HS_ULPI_NXT / ETH_MII_TX_CLK

ADC123_IN10ADC123_IN11ADC123_IN12ADC123_IN13

G9152632M2F8162733M3

10D7172834M4PC2I/OFTPC2

11G8182935M5-12--13

---193036

-

PC3

(6)

I/OFTSSSSS

PC3VDD_12VSSAVREF-VREF+VDDA

VDD_12VSSAVREF-VREF+VDDA

PA0(7)-WKUP(6)

203137M1---N1

F7213238P1-223339R1

14E7233440N3

USART2_CTS/ UART4_TX/

ETH_MII_CRS / ADC123_CH0

I/OFTPA0-WKUP

TIM2_CH1_ETR//WKUPTIM5_CH1 / TIM8_ETR

USART2_RTS / UART4_RX/

ETH_RMII_REF_CLK / ETH_MII_RX_CLK / TIM5_CH2 / TIM2_CH2

15H8243541N2

PA1(6)

I/OFTPA1ADC123_IN1

16J9253642P2----------------43

F4

PA2

(6)

I/OFTI/OFTI/OFTI/OFTI/OFT

PA2PH2PH3PH4PH5

USART2_TX/TIM5_CH3 /

TIM9_CH1 / TIM2_CH3 / ADC123_IN2

ETH_MDIO

ETH_MII_CRSETH_MII_COLI2C2_SCL / OTG_HS_ULPI_NXT

I2C2_SDA

PH2PH3PH4PH5

44G445H446

J4

Doc ID 15818 Rev 539/147

Pinouts and pin descriptionTable 5.

WLCSP64+2

STM32F205xx, STM32F207xx

STM32F20x pin and ball definitions (continued)

I / O Level(2)

Pins

UFBGA176

Type(1)

LQFP100

LQFP144

LQFP176

Main function(3) (after reset)

LQFP64

Pin nameAlternate functions

Other functions

17G7263747R2

PA3(6)

I/OFTPA3

USART2_RX/TIM5_CH4 / TIM9_CH2 / TIM2_CH4 /

ADC123_IN3

OTG_HS_ULPI_D0 / ETH_MII_COL

18F1273848

H7

-L4

VSS_4REGOFFVDD_4PA4(6)

SI/OS

VSS_4REGOFFVDD_4PA4

SPI1_NSS / SPI3_NSS /

USART2_CK / DCMI_HSYNC / OTG_HS_SOF/ I2S3_WSSPI1_SCK/

OTG_HS_ULPI_CK / / TIM2_CH1_ETR/ TIM8_CHIN

ADC12_IN4 /DAC1_OUT

19E1283949K4

20J8294050N4I/O

21H6304151P4

PA5(6)

I/OPA5

ADC12_IN5/DAC2_OUT

22H5314252P3

PA6(6)

I/OFTPA6

SPI1_MISO /

TIM8_BKIN/TIM13_CH1 /

ADC12_IN6

DCMI_PIXCLK / TIM3_CH1

/ TIM1_BKINSPI1_MOSI/ TIM8_CH1N /

TIM14_CH1TIM3_CH2/

ADC12_IN7

ETH_MII_RX_DV / TIM1_CH1N / RMII_CRS_DVETH_RMII_RX_D0 / ETH_MII_RX_D0ETH_RMII_RX_D1 / ETH_MII_RX_D1

ADC12_IN14ADC12_IN15

23J7324353R3

PA7(6)FT

PA7

24H4334454N525G3344555P5

PC4(6)PC5(6)

I/OFTI/OFT

PC4PC5

26J6354656R5

PB0(6)

I/OFTPB0

TIM3_CH3 / TIM8_CH2N/ OTG_HS_ULPI_D1/

ADC12_IN8

ETH_MII_RXD2 / TIM1_CH2NTIM3_CH4 / TIM8_CH3N/ OTG_HS_ULPI_D2/ ETH_MII_RXD3 / ADC12_IN9 OTG_HS_INTN / TIM1_CH3N

27J5364757R4

PB1(6)

I/OFTPB1

28J4374858M6------4959R65060P6

PB2PF11PF12

I/OFTPB2-BOOT1I/OFTI/OFT

PF11PF12

DCMI_12FSMC_A6

40/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxTable 5.

WLCSP64+2

Pinouts and pin description

STM32F20x pin and ball definitions (continued)

I / O Level(2)

Pins

UFBGA176

Type(1)

LQFP100

LQFP144

LQFP176

Main function(3) (after reset)

LQFP64

Pin nameAlternate functions

Other functions

------------------

------------------

-------

5161M85262N85363N65464R75565P75666N75767M7

VSS_6VDD_6PF13PF14PF15PG0PG1PE7PE8PE9VSS_7VDD_7PE10PE11PE12PE13PE14PE15

SSI/OFTI/OFTI/OFTI/OFTI/OFTI/OFTI/OFTI/OFTSSI/OFTI/OFTI/OFTI/OFTI/OFTI/OFT

VSS_6VDD_6PF13PF14PF15PG0PG1PE7PE8PE9VSS_7VDD_7PE10PE11PE12PE13PE14PE15

FSMC_D7/TIM1_CH2NFSMC_D8/TIM1_CH2FSMC_D9/TIM1_CH3NFSMC_D10/TIM1_CH3FSMC_D11/TIM1_CH4FSMC_D12/TIM1_BKINSPI2_SCK/ I2S2_CK/ I2C2_SCL / USART3_TX / OTG_HS_ULPI_D3 / ETH_MII_RX_ER / OTG_HS_SCL / TIM2_CH3I2C2_SDA/USART3_RX/ OTG_HS_ULPI_D4 / ETH_RMII_TX_EN/ ETH_MII_TX_EN / OTG_HS_SDA / TIM2_CH4

FSMC_A7FSMC_A8FSMC_A9FSMC_A10FSMC_A11FSMC_D4/TIM1_ETRFSMC_D5/TIM1_CH1NFSMC_D6/TIM1_CH1

385868R8395969P8406070P9--6171M96272N9

416373R9426474P10436575R10446676N11456777P11466878R11

29H3476979R12PB10I/OFTPB10

30J2487080R13PB11I/OFTPB11

31J3497181M1032-------507282N10------83M1184N1285M12

VCAP_1VDD_1PH6PH7PH8

SSI/OFTI/OFTI/OFT

VCAP_1VDD_1PH6PH7PH8

I2C2_SMBA / TIM12_CH1 /

ETH_MII_RXD2

I2C3_SCL / ETH_MII_RXD3I2C3_SDA / DCMI_HSYNC

Doc ID 15818 Rev 541/147

Pinouts and pin descriptionTable 5.

WLCSP64+2

STM32F205xx, STM32F207xx

STM32F20x pin and ball definitions (continued)

I / O Level(2)

Pins

UFBGA176

Type(1)

LQFP100

LQFP144

LQFP176

Main function(3) (after reset)

LQFP64

Pin nameAlternate functions

Other functions

------

------

------

------

86M1387L1388L1289K1290H1291J12

PH9PH10PH11PH12VSS_14VDD_14

I/OFTI/OFTI/OFTI/OFTSS

PH9PH10PH11PH12VSS_14VDD_14

I2C3_SMBA / TIM12_CH2/

DCMI_D0

TIM5_CH1_ETR /

DCMI_D1TIM5_CH2 / DCMI_D2TIM5_CH3 / DCMI_D3

33J1517392P12PB12I/OFTPB12

SPI2_NSS/I2S2_WS/

I2C2_SMBA/

USART3_CK/ TIM1_BKIN /

CAN2_RX / OTG_HS_ULPI_D5/ ETH_RMII_TXD0 / ETH_MII_TXD0/ OTG_HS_IDSPI2_SCK / I2S2_CK /

USART3_CTS/

TIM1_CH1N /CAN2_TX / OTG_HS_ULPI_D6 / ETH_RMII_TXD1 / ETH_MII_TXD1SPI2_MISO/ TIM1_CH2N / TIM12_CH1 / OTG_HS_DM

USART3_RTS/ TIM8_CH2NSPI2_MOSI / I2S2_SD / TIM1_CH3N / TIM8_CH3N

/ TIM12_CH2 / OTG_HS_DPFSMC_D13 / USART3_TXFSMC_D14 / USART3_RXFSMC_D15 / USART3_CKFSMC_A16/USART3_CTSFSMC_A17/TIM4_CH1 /

USART3_RTSFSMC_A18/TIM4_CH2

34H2527493P13PB13I/OFTPB13

OTG_HS_VBUS

35H1537594R14PB14I/OFTPB14

36G1547695R15PB15I/OFTPB15

--------

--------

557796P15567897P14577998N15588099N145981100N136082101M15--83102

-

PD8PD9PD10PD11PD12PD13VSS_8VDD_8

I/OFTI/OFTI/OFTI/OFTI/OFTI/OFTSS

PD8PD9PD10PD11PD12PD13VSS_8VDD_8

84103J13

42/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxTable 5.

WLCSP64+2

Pinouts and pin description

STM32F20x pin and ball definitions (continued)

I / O Level(2)

Pins

UFBGA176

Type(1)

LQFP100

LQFP144

LQFP176

Main function(3) (after reset)

LQFP64

Pin nameAlternate functions

Other functions

-----------

-----------

6185104M146286105L14---------87106L1588107K1589108K1490109K1391110J1592111J1493112H1494113G1295114H13

PD14PD15PG2PG3PG4PG5PG6PG7PG8VSS_9VDD_9PC6

I/OFTI/OFTI/OFTI/OFTI/OFTI/OFTI/OFTI/OFTI/OFTSS

PD14PD15PG2PG3PG4PG5PG6PG7PG8VSS_9VDD_9PC6

FSMC_D0/TIM4_CH3FSMC_D1/TIM4_CH4

FSMC_A12FSMC_A13FSMC_A14FSMC_A15FSMC_INT2

FSMC_INT3 /USART6_CK

USART6_RTS / ETH_PPS_OUT

37G26396115H15I/OFT

SPI2_MCK /

TIM8_CH1/SDIO_D6 /

USART6_TX / DCMI_D0/TIM3_CH1SPI3_MCK /

TIM8_CH2/SDIO_D7 /

USART6_RX / DCMI_D1/TIM3_CH2TIM8_CH3/SDIO_D0 /TIM3_CH3/ USART6_CK /

DCMI_D2I2S2_CKIN/ I2S3_CKIN/

MCO2 /

TIM8_CH4/SDIO_D1 / /I2C3_SDA / DCMI_D3 /

TIM3_CH4MCO1 / USART1_CK/ TIM1_CH1/ I2C3_SCL/

OTG_FS_SOFUSART1_TX/ TIM1_CH2 / I2C3_SMBA / DCMI_D0USART1_RX/ TIM1_CH3/ OTG_FS_ID/DCMI_D1USART1_CTS / CAN1_RX / TIM1_CH4 / OTG_FS_DM

OTG_FS_VBUS

38F26497116G15PC7I/OFTPC7

39F36598117G14PC8I/OFTPC8

40D16699118F14PC9I/OFTPC9

41E267100119F15PA8I/OFTPA8

42E368101120E1543D369102121D1544D270103122C15

PA9PA10PA11

I/OFTI/OFTI/OFT

PA9PA10PA11

Doc ID 15818 Rev 543/147

Pinouts and pin descriptionTable 5.

WLCSP64+2

STM32F205xx, STM32F207xx

STM32F20x pin and ball definitions (continued)

I / O Level(2)

Pins

UFBGA176

Type(1)

LQFP100

LQFP144

LQFP176

Main function(3) (after reset)

LQFP64

Pin nameAlternate functions

Other functions

45C171104123B1546B272105124A1547C273106125F13-B174107126F12

PA12PA13VCAP_2VSS_2VDD_2PH13PH14PH15PI0PI1PI2PI3VSS_15VDD_15PA14

I/OFTI/OFTSSSI/OFTI/OFTI/OFTI/OFTI/OFTI/OFTI/OFTSSI/OFT

PA12JTMS-SWDIOVCAP_2VSS_2VDD_2PH13PH14PH15PI0PI1PI2PI3VSS_15VDD_15JTCK-SWCLKJTDI

USART1_RTS / CAN1_TX/ TIM1_ETR/ OTG_FS_DP

JTMS-SWDIO

48A875108127G13----------------------------128E12-129E13-130D13-131E14-132D14-133C14-134C13-135D9-136C9

TIM8_CH1N / CAN1_TXTIM8_CH2N / DCMI_D4TIM8_CH3N / DCMI_D11TIM5_CH4 / SPI2_NSS / I2S2_WS / DCMI_D13SPI2_SCK / I2S2_CK /

DCMI_D8TIM8_CH4 /SPI2_MISO /

DCMI_D9TIM8_ETR / SPI2_MOSI / I2S2_SD / DCMI_D10

49A176109137A14JTCK-SWCLKJTDI/ SPI3_NSS/

I2S3_WS/TIM2_CH1_ETR

/ SPI1_NSSSPI3_SCK / I2S3_CK / UART4_TX / SDIO_D2 / DCMI_D8 / USART3_TXUART4_RX/ SPI3_MISO /

SDIO_D3 /

DCMI_D4/USART3_RXUART5_TX/SDIO_CK / DCMI_D9 / SPI3_MOSI / I2S3_SD / USART3_CKFSMC_D2/CAN1_RXFSMC_D3 / CAN1_TX

50A277110138A13I/OFT

51B378111139B14PC10I/OFTPC10

52C379112140B13PC11I/OFTPC11

53A380113141A12----81114142B1282115143C12

PC12PD0PD1

I/OFTI/OFTI/OFT

PC12PD0PD1

44/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxTable 5.

WLCSP64+2

Pinouts and pin description

STM32F20x pin and ball definitions (continued)

I / O Level(2)

Pins

UFBGA176

Type(1)

LQFP100

LQFP144

LQFP176

Main function(3) (after reset)

LQFP64

Pin nameAlternate functions

Other functions

54C783116144D12----------------------84117145D1185118146D1086119147C11-120148D8-121149C887122150B1188123151A11-124152C10-125153B10-126154B9-127155B8

PD2PD3PD4PD5VSS_10VDD_10PD6PD7PG9PG10PG11PG12

I/OFTI/OFTI/OFTI/OFTSSI/OFTI/OFTI/OFTI/OFTI/OFTI/OFT

PD2PD3PD4PD5VSS_10VDD_10PD6PD7PG9PG10PG11PG12

TIM3_ETR/UART5_RXSDIO_CMD / DCMI_D11FSMC_CLK/USART2_CTSFSMC_NOE/USART2_RTSFSMC_NWE/USART2_TX

FSMC_NWAIT/USART2_R

XUSART2_CK/FSMC_NE1/F

SMC_NCE2USART6_RX /

FSMC_NE2/FSMC_NCE3

FSMC_NCE4_1/ FSMC_NE3FSMC_NCE4_2 / ETH_MII_TX_ENFSMC_NE4 / USART6_RTSFSMC_A24 / USART6_CTS

/ETH_MII_TXD0/ETH_RMII

_TXD0FSMC_A25 / USART6_TX/ETH_MII_TXD1/ETH_RMII

_TXD1

---128156A8PG13I/OFTPG13

----

----

-129157A7-130158D7-131159C7-132160B7

PG14VSS_11VDD_11PG15PB3

I/OFTSSI/OFT

PG14VSS_11VDD_11PG15

USART6_CTS / DCMI_D13JTDO/ TRACESWO/ SPI3_SCK / I2S3_CK / TIM2_CH2 / SPI1_SCKNJTRST/ SPI3_MISO / TIM3_CH1 / SPI1_MISO

55A489133161A10

JTDO/

I/OFT

TRACESWOI/OFT

NJTRST

56B490134162A9PB4

Doc ID 15818 Rev 545/147

Pinouts and pin descriptionTable 5.

WLCSP64+2

STM32F205xx, STM32F207xx

STM32F20x pin and ball definitions (continued)

I / O Level(2)

Pins

UFBGA176

Type(1)

LQFP100

LQFP144

LQFP176

Main function(3) (after reset)

LQFP64

Pin nameAlternate functions

Other functions

57A591135163A6PB5I/OFTPB5

I2C1_SMBA/ CAN2_RX / OTG_HS_ULPI_D7 / / SPI1_MOSI/ SPI3_MOSI / DCMI_D10 / I2S3_SDI2C1_SCL/ TIM4_CH1 / CAN2_TX /OTG_FS_INTN / DCMI_D5/USART1_TXI2C1_SDA / FSMC_NL(8) /

DCMI_VSYNC / USART1_RX/ TIM4_CH2

VPP

TIM4_CH3/SDIO_D4/ TIM10_CH1 / DCMI_D6 /

OTG_FS_SCL/ ETH_MII_TXD3 / I2C1_SCL/ CAN1_RXSPI2_NSS/ I2S2_WS/ TIM4_CH4/ TIM11_CH1/ OTG_FS_SDA/ SDIO_D5 / DCMI_D7 / I2C1_SDA /

CAN1_TXTIM4_ETR / FSMC_NBL0 /

DCMI_D2FSMC_NBL1 / DCMI_D3

58B592136164B6PB6I/OFTPB6

59A693137165B560B694138166D6

PB7BOOT0

I/OFTI

PB7BOOT0

61B795139167A5PB8I/OFTPB8

62A796140168B4PB9I/OFTPB9

--

---

97141169A498142170A3

D5

----

PE0PE1VSSVSS_3RFU(9)VDD_3PI4PI5PI6PI7IRROFF

I/OFTI/OFTSS

PE0PE1VSSVSS_3VDD_3PI4PI5PI6PI7IRROFF

63D8--

99143171C6

64D9100144172C5---------C8

------173D4-174C4-175C3-176C2---

SI/OFTI/OFTI/OFTI/OFTI/O

TIM8_BKIN / DCMI_D5TIM8_CH1 / DCMI_VSYNCTIM8_CH2 / DCMI_D6TIM8_CH3 / DCMI_D7

1.I = input, O = output, S = supply, HiZ = high impedance.2.FT = 5 V tolerant.

3.Function availability depends on the chosen device.

46/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxPinouts and pin description

4.PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).

5.Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F20x and STM32F21x reference manual, available from the STMicroelectronics website: www.st.com.

6.FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).

7.If the device is delivered in an UFBGA176 package and if the REGOFF pin is set to VDD (Regulator in bypass mode), then PA0 is used as an internal Reset (active low).

8.FSMC_NL pin is also named FSMC_NADV on memory devices.

9.RFU = reserved for future use.

Doc ID 15818 Rev 547/147

48/147Table 6.Alternate function mapping

AF0AF1AF2AF3AF4AF5AF6AF7AF8AF9AF10AF11AF12AF13

Port

SYSTIM1/2TIM3/4/5TIM8/9/10/11SPI3/I2S3USART1/2/3UART4/5/FSMC/SDIO/AF014AF15

I2C1/I2C2/I2C3SPI1/SPI2/I2S2CAN1/CAN2/

USART6TIM12/13/14ETHOTG_FSDCMI

PA0-WKUPTIM2_CH1

TIM2_ETR TIM 5_CH1TIM8_ETR USART2_CTS UART4_TX ETH_MII_CRS EVENTOUT

PA1ETH_MII _RX_CLK

ETH_RMII _REF_CLKEVENTOUT

PA2ETH_MDIOEVENTOUTPA3OTG_HS_ULPI_DETH EVENTOUTPA4SPI1_NSS SPI3_NSS

I2S3_WS USART2_CK OTG_HS_SOFPA5TIM2_CH1

TIM2_ETR EVENTOUT

PA6EVENTOUTPA7ETH_MII _RX_DV

ETH_RMII _CRS_DVEVENTOUT

PA8MCO1EVENTOUTPA9CMI_Doc ID 15818 Rev 5PA10TIM1_CH3 CMI_EVENTOUT

PA11TIM1_CH4 OTG_FS_MEVENTOUTPA12TIM1_ETR OTG_FS_PEVENTOUTPA13EVENTOUTPA14EVENTOUTPA15JTDI TIM 2_CH1

TIM 2_ETR SPI1_NSS SPI3_NSS

I2S3_WS EVENTOUT

PB0OTG_HS_ULPI_D_MII_RXDEVENTOUTPB1OTG_HS_ULPI_D_MII_RXDEVENTOUTPB2EVENTOUTPB3JTDO/

TRACESWOSPI3_SCK

I2S3_CK EVENTOUT

PB4SPI3_MISOEVENTOUTPB5SPI3_MOSI

I2S3_SD DDCMI_DEVENTOUT

PB6CMI_DEVENTOUTPB7EVENTOUTPB8_MII_TXDDSDIO_CMI_DEVENTOUTPB9I2C1_SDSPI2_NSS

I2S2_WS DDSDIO_CMI_DEVENTOUT

PB10I2S2_CK MII_RX_EREVENTOUT

PB11OTG_HS_ULPI_ETH _RMII_TX_ENOTG_HS_SPB12SPI2_NSS

I2S2_WS OTG_HS_ULPI_ETH _MII_TXD0

ETH _RMII_TXD0OTG_HS_IDEVENTOUT

PB13TIM1_CH1N SPI2_SCK

I2S2_CK OTG_HS_ULPI_ETH _MII_TXD1

ETH _RMII_TXD1PB14SPI2_MISOOTG_HS_EVENTOUTPinouts and pin descriptionSTM32F205xx, STM32F207xx

Table 6.Alternate function mapping (continued)

AF0AF1AF2AF3AF4AF5AF6AF7AF8AF9AF10AF11AF12AF13

PortCAN1/CAN2/AF014AF15

SYSTIM1/2TIM3/4/5TIM8/9/10/11I2C1/I2C2/I2C3SPI1/SPI2/I2S2SPI3/I2S3USART1/2/3UART4/5/

USART6TIM12/13/14ETHFSMC/SDIO/

OTG_FSDCMI

PB15I2S2_SD EVENTOUT

PC0PC1ETH_MDCEVENTOUTPC2SPI2_MISOOTG_HS_ULPI_D_MII_TXDEVENTOUTPC3SPI2_MOSIETH _MII_TX_CLK

ETH _RMII_TX_CLK EVENTOUT

PC4ETH_MII_RXD0

ETH_RMII_RXD0EVENTOUT

PC5ETH _RMII_RXD1EVENTOUT

PC6SDIO_DCMI_EVENTOUTPC7SDIO_DCMI_EVENTOUTPC8IO_CMI_EVENTOUTPC9MCO2I2C3_SDI2S2_CKINDSIO_DCMI_EVENTOUTDoc ID 15818 Rev 5PC10SPI3_SCK

I2S3_CK DSIO_DDCMI_DEVENTOUT

PC11SPI3_MISODSIO_DDCMI_DEVENTOUTPC12SPI3_MOSI

I2S3_SD DSDCMI_DEVENTOUT

PC13

PC14-OSC32_IN

PC15-OSC32_OUT

PD0EVENTOUTPD1EVENTOUTPD2TIM3_ETR IO_CMCMI_EVENTOUTPD3USART2_CTS PD4USART2_RTS PD5USART2_TX PD6USART2_RX PD7USART2_CK PD8USART3_TX FSMC_PD9USART3_RX FSMC_PD10USART3_CK FSMC_PD11USART3_CTS PD12TIM4_CH1 USART3_RTS 49/147PD13TIM4_CH2 PD14TIM4_CH3 FSMC_STM32F205xx, STM32F207xxPinouts and pin description

50/147Table 6.Alternate function mapping (continued)

AF0AF1AF2AF3AF4AF5AF6AF7AF8AF9AF10AF11AF12AF13

PortAF014AF15

SYSTIM1/2TIM3/4/5TIM8/9/10/11I2C1/I2C2/I2C3SPI1/SPI2/I2S2SPI3/I2S3USART1/2/3UART4/5/CAN1/CAN2/

USART6TIM12/13/14ETHFSMC/SDIO/

OTG_FSDCMI

PD15TIM4_CH4 FSMC_PE0TIM4_ETR CMI_DEVENTOUTPE1CMI_DEVENTOUTPE2TRACECLK ETH _MII_TXD3 FSMC_A23 EVENTOUTPE3TRACED0 PE4TRACED1 DCMI_EVENTOUTPE5TRACEDCMI_EVENTOUTPE6TRACEDCMI_EVENTOUT

PE7TIM1_ETR FSMC_PE8TIM1_CH1N FSMC_PE9TIM1_CH1 FSMC_PE10TIM1_CH2N FSMC_Doc ID 15818 Rev 5PE11TIM1_CH2 FSMC_PE12TIM1_CH3N FSMC_PE13TIM1_CH3 FSMC_PE14TIM1_CH4 FSMC_PE15TIM1_BKIN FSMC_PF0I2C2_SDA PF1I2C2_SCL PF2I2C2_SMBAPF3PF4PF5PF6TIM10_CH1 FSMC_NIORPF7TIM11_CH1 PF8EVENTOUTPF9EVENTOUTPF10PF11CMI_PF12PF13PF14PF15Pinouts and pin descriptionSTM32F205xx, STM32F207xx

Table 6.Alternate function mapping (continued)

AF0AF1AF2AF3AF4AF5AF6AF7AF8AF9AF10AF11AF12AF13

Port

SYSTIM1/2TIM3/4/5TIM8/9/10/11SPI3/I2S3USART1/2/3UART4/5/FSMC/SDIO/AF014AF15

I2C1/I2C2/I2C3SPI1/SPI2/I2S2CAN1/CAN2/

USART6TIM12/13/14ETHOTG_FSDCMI

PG0PG1PG2PG3PG4PG5PG6PG7EVENTOUTPG8EVENTOUTPG9EVENTOUTPG10Doc ID 15818 Rev 5PG11ETH _MII_TX_EN

ETH _RMII_TX_ENPG12EVENTOUTPG13UART6_CTS ETH _MII_TXD0

ETH _RMII_TXD0PG14USART6_TX ETH _MII_TXD1

ETH _RMII_TXD1 PG15USART6_CTS CMI_PH0 - OSC_IN

PH1 - OSC_OUT

PH2ETH _MII_CRSEVENTOUTPH3ETH _MII_COL EVENTOUTPH4I2C2_SCL PH5I2C2_SDA EVENTOUTPH6I2C2_SMBA_MII_RXEVENTOUTPH7I2C3_SCL ETH _MII_RXD3 EVENTOUTPH8I2C3_SDA PH9I2C3_SMBACMI_EVENTOUTPH10TIM5_CH1TIM5_ETR CMI_PH11TIM5_CH2 CMI_PH12TIM5_CH3 CMI_PH13TIM8_CH1N CAN1_TXEVENTOUT51/147PH14TIM8_CH2N CMI_PH15TIM8_CH3N CMI_STM32F205xx, STM32F207xxPinouts and pin description

52/147Table 6.Alternate function mapping (continued)

AF0AF1AF2AF3AF4AF5AF6AF7AF8AF9AF10AF11AF12AF13

Port

SYSTIM1/2TIM3/4/5TIM8/9/10/11SPI3/I2S3USART1/2/3UART4/5/CAN1/CAN2/FSMC/SDIO/AF014AF15

I2C1/I2C2/I2C3SPI1/SPI2/I2S2USART6TIM12/13/14ETHOTG_FSDCMI

PI0TIM5_CH4 I2S2_WS CMI_PI1SPI2_SCK

I2S2_CK CMI_PI2CMI_PI3TIM8_ETR SPI2_MOSI

I2S2_SD CMI_PI4TIM8_BKIN CMI_PI5TIM8_CH1 PI6TIM8_CH2 CMI_PI7TIM8_CH3 CMI_PI8

PI9CAN1_RXEVENTOUTPI10ETH _MII_RX_EREVENTOUT

Doc ID 15818 Rev 5PI11OTG_HS_ULPI_Pinouts and pin descriptionSTM32F205xx, STM32F207xx

STM32F205xx, STM32F207xxMemory mapping

4 Memory mapping

The memory map is shown in Figure15.

Doc ID 15818 Rev 553/147

Electrical characteristicsSTM32F205xx, STM32F207xx5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to VSS.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst

conditions of ambient temperature, supply voltage and frequencies by tests in production on

100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by

the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics

are indicated in the table footnotes and are not tested in production. Based on

characterization, the minimum and maximum values refer to sample tests and represent the

mean value plus or minus three times the standard deviation (mean±3Σ).

5.1.2 Typical values

Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the

1.8V≤VDD≤3.6V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from

a standard diffusion lot over the full temperature range, where 95% of the devices have an

error less than or equal to the value indicated (mean±2Σ).

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are

not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure16.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure17.

54/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxElectrical characteristics

5.1.6 Power supply scheme

1.4.7μF capacitor must be connected to one of the VDD pin.

5.1.7 Current consumption measurement

Doc ID 15818 Rev 555/147

Electrical characteristicsSTM32F205xx, STM32F207xx

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Table7: Voltage characteristics, Table8: Current characteristics, and Table9: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.Table 7.

SymbolVDD–VSS

VIN|ΔVDDx||VSSX ? VSS|VESD(HBM)

Voltage characteristics

Ratings

External main supply voltage (including VDDA, VDD)(1)

Input voltage on five-volt tolerant pin(2)Input voltage on any other pin(3)

Variations between different VDD power pinsVariations between all the different ground pinsElectrostatic discharge voltage (human body model)

MinTBDVSS–0.3VSS–0.3

MaxTBDVDD+4.04.0TBDTBD

see Section5.3.13:

Absolute maximum ratings (electrical sensitivity)

mVVUnit

1.All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power

supply, in the permitted range.2.IINJ(PIN) must never be exceeded (see Table8: Current characteristics). This is implicitly insured if VIN

maximum is respected. If VIN maximum cannot be respected, the injection current must be limited

externally to the IINJ(PIN) value. A positive injection is induced by VIN> VINmax while a negative injection is induced by VIN < VSS. 3.Positive current injection is not possible on these I/Os. VIN maximum must be respected. Negative current

injection is possible and must not exceed IINJ(PIN).

Table 8.

SymbolIVDDIVSSIIO

(2)

Current characteristics

Ratings

Total current into VDD/VDDA power lines (source)(1)Total current out of VSS ground lines (sink)(1)Output current sunk by any I/O and control pinOutput current source by any I/Os and control pinInjected current on five-volt tolerant I/O(3)Injected current on any other pin(4)

Total injected current (sum of all I/O and control pins)(5)

Max.TBDTBDTBDTBD–5/+0±5TBD

mAUnit

IINJ(PIN)

ΣIINJ(PIN)(4)

1.All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power

supply, in the permitted range.2.Negative injection disturbs the analog performance of the device. See note in Section5.3.18: 12-bit ADC

characteristics.3.Positive injection is not possible on these I/Os. VIN maximum must always be respected. IINJ(PIN) must

never be exceeded. A negative injection is induced by VIN<VSS.4.IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum

cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS.

56/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxElectrical characteristics

5.When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the

positive and negative injected currents (instantaneous values). These results are based on characterization with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.

Table 9.

Thermal characteristics

Ratings

Storage temperature rangeMaximum junction temperature

Value–40 to +125

125

Unit°C°C

SymbolTSTGTJ

5.3 Operating conditions

5.3.1

General operating conditions

Table 10.

SymbolfHCLKfPCLK1fPCLK2VDD

General operating conditions

Parameter

Internal AHB clock frequencyInternal APB1 clock frequencyInternal APB2 clock frequencyStandard operating voltageAnalog operating voltage

(ADC limited to 1 M samples)Analog operating voltage(ADC limited to 2 M samples)Backup operating voltage

LQFP64WLCSP66

Power dissipation at TA = 85°C LQFP100for suffix 6 or TA = 105°C for

LQFP144suffix 7(4)

LQFP176UFBGA176

Ambient temperature for 6

suffix version

Maximum power dissipation Low power dissipation

(5)

ConditionsMin0 0 0 1.8(1)

Max12030603.63.6

Unit

MHz

V

VDDA(2)

Must be the same potential as VDD(3)

1.8(1)2.41.65

V

3.63.6444392434500526513

–40

85

°CmWV

VBAT

PD

TA

Ambient temperature for 7 suffix version

TJ

Junction temperature range

–40

105

Maximum power dissipation Low power dissipation(5)6 suffix version7 suffix version

–40 –40

105125

°C

°C

1.This value is reduced to 1.65 V for STM32F20x in WLCSP package assuming IRROFF is set to VDD.2.When the ADC is used, refer to Table59: ADC characteristics.

3.It is recommended to power VDD and VDDA from the same source. A maximum difference of 300mV

between VDD and VDDA can be tolerated during power-up and operation.

Doc ID 15818 Rev 557/147

Electrical characteristicsSTM32F205xx, STM32F207xx

4.If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.

5.In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.

Table 11.

Operating power supply range

Limitations depending on the operating power supply range

Maximum Flash memory access frequency (fFlashmax)16MHz with no Flash memory wait

state18MHz with no Flash memory wait

state

Number of wait

states at maximum CPU frequency (fCPUmax=120MHz)(1)

FSMC controller operation

Possible Flash memory operations

ADC operation

I/O operation

VDD =1.8 to 2.1V(2)

Conversion time up to 1Msps

7(3)

–Degraded speed

performanceup to 30MHz–No I/O

compensation

–Degraded speed

performanceup to 30MHz–No I/O

compensation

–Degraded speed

performance

up to 48MHz

–I/O

compensation works

8-bit erase and program operations only

VDD = 2.1 to 2.4V

Conversion time up to 1Msps

6

(3)

16-bit erase and program operations

VDD = 2.4 to 2.7V

Conversion time up to 2Msps

24MHz with no Flash memory wait

state

4

(3)

16-bit erase and program operations

VDD = 2.7 to 3.6V(4)

Conversion time up to 2Msps

30MHz with no Flash memory wait

state

3(3)

–up to 60MHz

–Full-speed

when VDD =

operation

3.0 to 3.6V32-bit erase

and program –I/O

–up to

operationscompensation

48MHz

works

when VDD = 2.7 to 3.0V

1.The number of wait states can be reduced by reducing the CPU frequency (see Figure20).

2.This voltage range is reduced to 1.65 to 2.1V for devices in WLCSP package assuming IRROFF is set to VDD.

3.Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the

execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.4.The voltage range for ULPI USB high-speed, Ethernet MII and Ethernet RMII is 3.0 to 3.6V.

58/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxElectrical characteristics

5.3.2 Operating conditions at power-up / power-down

(regulator not bypassed)

Subject to general operating conditions for TA.Table 12.

SymboltVDD

Operating conditions at power-up / power-down (regulator not bypassed)

Parameter

VDD rise time rateVDD fall time rate

MinTBDTBD

Max

Unitμs/V

∞∞

Doc ID 15818 Rev 559/147

Electrical characteristicsSTM32F205xx, STM32F207xx

5.3.3

Operating conditions at power-up / power-down in regulatorbypass mode

Subject to general operating conditions for TA.Table 13.

SymboltVDD

Operating conditions at power-up / power-down in regulator bypass mode

Parameter

VDD rise time rateVDD fall time rate

Conditions

Power-upPower-down

MinTBDTBDTBDTBD

Max

Unit

∞∞∞∞

μs/V

tVCAP

VCAP_1 and VCAP_2 rise

Power-up

time rate

VCAP_1 and VCAP_2 fall time rate

Power-down

5.3.4 Embedded reset and power control block characteristics

The parameters given in Table14 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table10.Table 14.

Symbol

Embedded reset and power control block characteristics

Parameter

Conditions

PLS[2:0]=000 (rising edge)PLS[2:0]=000 (falling edge)PLS[2:0]=001 (rising edge)PLS[2:0]=001 (falling edge)PLS[2:0]=010 (rising edge)PLS[2:0]=010 (falling edge)PLS[2:0]=011 (rising edge)

MinTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBD

Typ TBD2.00TBD2.20TBD2.30TBD2.50TBD2.70TBD2.80TBD2.90TBD3.00100

MaxTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBD

UnitVVVVVVVVVVVVVVVVmV

VPVD

Programmable voltage PLS[2:0]=011 (falling edge)detector level selectionPLS[2:0]=100 (rising edge)

PLS[2:0]=100 (falling edge)PLS[2:0]=101 (rising edge)PLS[2:0]=101 (falling edge)PLS[2:0]=110 (rising edge)PLS[2:0]=110 (falling edge)PLS[2:0]=111 (rising edge)PLS[2:0]=111 (falling edge)

VPVDhyst(2)

PVD hysteresis

60/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xx

Table 14.

SymbolVPOR/PDR

Electrical characteristics

Embedded reset and power control block characteristics (continued)

Parameter

Conditions

MinTBD(1)TBDTBDTBDTBDTBDTBD

Typ 1.701.742.20TBD2.50TBD2.8040

TBD-TBD-TBD200MaxTBDTBDTBDTBDTBDTBDTBD

UnitVVVVVVVmVmsmA

Power-on/power-down Falling edgereset thresholdRising edgeBrownout level 1 threshold Brownout level 2 thresholdBrownout level 3 thresholdPDR hysteresis

Falling edgeRising edgeFalling edgeRising edgeFalling edge

VBOR1

VBOR2VBOR3VPDRhyst(2)

TRSTTEMPO(2)Reset temporization

IRUSH

InRush current on voltage regulator power-on

1.The product behavior is guaranteed by design down to the minimum VPOR/PDR value.2.Guaranteed by design, not tested in production.

5.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in Figure19: Current consumption measurement scheme.

All run mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code.

Doc ID 15818 Rev 561/147

Electrical characteristicsSTM32F205xx, STM32F207xx

Typical and maximum current consumption

The MCU is placed under the following conditions:

●●●

All I/O pins are in input mode with a static value at VDD or VSS (no load).All peripherals are disabled except if it is explicitly mentioned.

The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 30MHz, 1 wait state from 30 to 60MHz, 2 wait states from 60 to 90MHz and 3 wait states from 90 to 120MHz).

Prefetch and Cache ON (Reminder: this bit must be set before clock setting and bus prescaling).

When the peripherals are enabled fPCLK1 = fHCLK/4, fPCLK2 = fHCLK/2, fADCCLK = fPCLK2/4

The maximum values are obtained for VDD = 3.6V and maximum ambient temperature (TA), and the typical values for TA= 25°C and VDD = 3.3V unless otherwise specified.

●●●

Table 15.

Typical and maximum current consumption in Run mode, code with data processingrunning from Flash

Typical

Max(1)

Unit

TA = 25°CTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBD

TA = 85°CTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBD

TA = 105°C

TBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBD

mA

Parameter

Conditions

fHCLK120 MHz90 MHz

External clock(2), all 60 MHzperipherals enabled30 MHz

26 MHz

Symbol

IDD

Supply current in Run mode

16 MHz120 MHz90 MHz

External clock(2), all 60 MHzperipherals disabled30 MHz

26 MHz16 MHz

1.Based on characterization, not tested in production.2.External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.

62/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxTable 16.

Electrical characteristics

Typical and maximum current consumption in Run mode, code with data processing running from RAM

Typ

Max(1)

Unit

TA = 25°C49.5382614.5TBDTBD221712.57TBDTBD

TA = 85°CTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBD

TA = 105°C

TBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBD

mA

Parameter

Conditions

fHCLK120 MHz90 MHz

60 MHzExternal clock(2),

all peripherals enabled(3)30 MHz

26 MHz

Supply current in Run mode

External clock(2), all peripherals disabled

Symbol

IDD

16 MHz120 MHz90 MHz60 MHz30 MHz26 MHz16 MHz

1.Based on characterization, tested in production at VDD max, fHCLK max.2.External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.

3.Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only

while the ADC is on (ADON bit is set in the ADC_CR2 register).

Table 17.

Symbol

Typical and maximum current consumption in Sleep mode

Typ

Parameter

Conditions

fHCLK120 MHz90 MHz

60 MHzExternal clock(2),

(3)all peripherals enabled30 MHz

26 MHz16 MHz120 MHz90 MHz

External clock(2), all

peripherals disabled

60 MHz30 MHz26 MHz16 MHz

Max(1)

TA = 105°CTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBD

mAUnit

TA = 25°CTA = 85°C37.529.520.514.5TBDTBD8.06.55.03.5TBDTBD

TBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBD

IDD

Supply current in Sleep mode

1.Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.2.External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.

Doc ID 15818 Rev 563/147

Electrical characteristicsSTM32F205xx, STM32F207xx

3.Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only

while the ADC is on (ADON bit is set in the ADC_CR2 register).

Table 18.

Symbol

Typical and maximum current consumptions in Stop mode

Typ(1)

Parameter

Conditions

Max

VDD/VBATVDD/VBATVDD/VBATTA = TA = Unit= 1.8V= 2.4V= 3.3V85°C105°C

Flash in Stop mode, low-speed and high-speed internal RC oscillators

Supply current and high-speed oscillator OFF (no in Stop mode independent watchdog)with main Flash in Deep power down mode, regulator in low-speed and high-speed internal Run modeRC oscillators and high-speed

IDD_STOP

oscillator OFF (no independent

watchdog)

Flash in Stop mode, low-speed and high-speed internal RC oscillators

Supply current and high-speed oscillator OFF (no in Stop mode independent watchdog)with main

regulator in Flash in Deep power down mode,

low-speed and high-speed internal Low Power

RC oscillators and high-speed mode

oscillator OFF (no independent watchdog)

350TBDTBD

300TBDTBD

μA

200

150

1.Typical values are measured at TA = 25 °C.

Table 19.

Symbol

Typical and maximum current consumptions in Standby mode

Typ(1)

Parameter

Conditions

Max

VDD/VBATVDD/VBATVDD/VBATTA = TA = Unit= 1.8V= 2.4V= 3.3V85°C105°C

43.33.22.5

TBDTBDTBDTBDTBD(2)TBD(2)TBD(2)TBD(2)

μA

Backup SRAM ON, RTC ON

Supply current Backup SRAM OFF, RTC ON

IDD_STBYin Standby

Backup SRAM ON, RTC OFFmode

Backup SRAM OFF, RTC OFF

1.Typical values are measured at TA = 25 °C.2.Based on characterization, not tested in production.

64/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxTable 20.

Symbol

Electrical characteristics

Typical and maximum current consumptions in VBAT mode

Typ(1)

Parameter

Conditions

Max

VDD/VBATVDD/VBATVDD/VBATTA = TA = Unit= 1.8V= 2.4V= 3.3V85°C105°C

0.81.500.7

TBD(2)TBD(2)TBDTBDTBDTBDTBDTBDμA

Backup

IDD_VBATdomain supply Backup SRAM ON, RTC ON

current Backup SRAM OFF, RTC OFF

Backup SRAM ON, RTC OFF

1.Typical values are measured at TA = 25 °C.2.Based on characterization, not tested in production.

Backup SRAM OFF, low-speed

oscillator and RTC ON

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in Table21. The MCU is placed under the following conditions:

●●●

all I/O pins are in input mode with a static value at VDD or VSS (no load)all peripherals are disabled unless otherwise mentioned

the given value is calculated by measuring the current consumption––

with all peripherals clocked off

with one peripheral clocked on (with only the clock applied)

ambient operating temperature and VDD supply voltage conditions summarized in Table7.

Peripheral current consumption

Peripheral(1)

GPIO AGPIO BGPIO CGPIO DGPIO E

Typical consumption at 25 °C

TBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBD

mAUnit

Table 21.

AHB1GPIO FGPIO GGPIO HGPIO IOTG_HSETH_MACOTG_FS

AHB2DCMIRNG

Doc ID 15818 Rev 565/147

Electrical characteristics

Table 21.

Peripheral current consumption (continued)

Peripheral(1)

TIM2TIM3TIM4TIM5TIM6TIM7TIM12TIM13TIM14USART2

APB1

USART3UART4UART5I2C1I2C2I2C3SPI2SPI3CAN1CAN2DACSDIOTIM1TIM8TIM9TIM10

APB2

TIM11ADC1(2)ADC2(2)ADC3SPI1USART1USART6

STM32F205xx, STM32F207xx

Typical consumption at 25 °C

TBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBD

Unit

mA

mA

1.fHCLK = 120 MHz, fAPB1 = fHCLK/4, fAPB2 = fHCLK/2, default prescaler value for each peripheral.

2.Specific conditions for ADC: fHCLK = 120MHz, fAPB1 = fHCLK/4, fAPB2 = fHCLK/2, fADCCLK = fAPB2/2, ADON

bit in the ADC_CR2 register is set to 1.

66/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxElectrical characteristics

5.3.6 External clock source characteristics

High-speed external user clock generated from an external source

The characteristics given in Table22 result from tests performed using an high-speed

external clock source, and under ambient temperature and supply voltage conditions summarized in Table10.Table 22.

SymbolfHSE_extVHSEHVHSELtw(HSE)tw(HSE)tr(HSE)tf(HSE)Cin(HSE)

High-speed external user clock characteristics

Parameter

External user clock source frequency(1)

OSC_IN input pin high level voltageOSC_IN input pin low level voltageOSC_IN high or low time(1)OSC_IN rise or fall time(1)OSC_IN input capacitance(1)

45

VSS≤VIN≤VDD

5

55±1

Conditions

Min10.7VDDVSS16

ns

20

pF%μA

Typ8

Max50VDD0.3VDD

UnitMHzV

DuCy(HSE)Duty cycle

IL

OSC_IN Input leakage current

1.Guaranteed by design, not tested in production.

Low-speed external user clock generated from an external source

The characteristics given in Table23 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table10.Table 23.

SymbolfLSE_extVLSEHVLSELtw(LSE)tw(LSE)tr(LSE)tf(LSE)Cin(LSE)

Low-speed external user clock characteristics

Parameter

User External clock source frequency(1)

OSC32_IN input pin high level voltage

OSC32_IN input pin low level voltage

OSC32_IN high or low time(1)OSC32_IN rise or fall time(1)OSC32_IN input capacitance(1)

30

5

70±1

0.7VDDVSS450

ns

50

pF%μA

Conditions

Min

Typ32.768

Max1000VDD

V

0.3VDD

UnitkHz

DuCy(LSE)Duty cycle

IL

OSC32_IN Input leakage current VSS≤VIN≤VDD

1.Guaranteed by design, not tested in production.

Doc ID 15818 Rev 567/147

Electrical characteristicsSTM32F205xx, STM32F207xx

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic

resonator oscillator. All the information given in this paragraph are based on characterization

results obtained with typical external components specified in Table24. In the application,

the resonator and the load capacitors have to be placed as close as possible to the oscillator

pins in order to minimize output distortion and startup stabilization time. Refer to the crystal

resonator manufacturer for more details on the resonator characteristics (frequency,

package, accuracy).

68/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xx

Table 24.

SymbolfOSC_INRFC

Electrical characteristics

HSE 4-26 MHz oscillator characteristics(1) (2)

Parameter

Oscillator frequencyFeedback resistor

Recommended load capacitance versus equivalent serial

resistance of the crystal (RS)(3)HSE driving currentOscillator transconductance

RS = 30 ΩVDD = 3.3 V, VIN=VSS

with 30 pF load

Startup VDD is stabilized

25

2

Conditions

Min4

20030Typ

Max26

UnitMHzkΩ pF

i2gm

1mAmA/Vms

tSU(HSE(4)Startup time

2.Based on characterization, not tested in production.

1.Resonator characteristics given by the crystal/ceramic resonator manufacturer.

3.The relatively low value of the RF resistor offers a good protection against issues resulting from use in a

humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.4.tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz

oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5pF to 25pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure23). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com.

1.REXT value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table25. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Doc ID 15818 Rev 569/147

Electrical characteristics

Table 25.

SymbolRFC

(2)

STM32F205xx, STM32F207xx

LSE oscillator characteristics (fLSE = 32.768 kHz) (1)

Parameter

Feedback resistor

Recommended load capacitance versus equivalent serial

resistance of the crystal (RS)(3)LSE driving current

Oscillator Transconductance

VDD is stabilizedRS = 30 kΩVDD = 3.3 V, VIN = VSS

5

3

Conditions

Min

Typ5

151.4Max

UnitMΩ pFμAμA/Vs

I2gm

tSU(LSE)(4)startup time

1.Based on characterization, not tested in production.

2.Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator

design guide for ST microcontrollers”.3.The oscillator selection can be optimized in terms of supply current using an high quality resonator with

small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details4.tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized

32.768kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

Note:

For CL1 and CL2 it is recommended to use high-quality external ceramic capacitors in the 5pF to 15pF range selected to match the requirements of the crystal or resonator (see Figure24). CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2.

Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.

To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL≤ 7 pF. Never use a resonator with a load capacitance of 12.5 pF.

Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF, then CL1 = CL2 = 8 pF.

Caution:

70/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxElectrical characteristics

5.3.7 Internal clock source characteristics

The parameters given in Table26 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table10.

High-speed internal (HSI) RC oscillator

Table 26.

SymbolfHSI

HSI oscillator characteristics (1)

Parameter

Conditions

Min

Typ

Max

Unit

User-trimmed with the RCC_CR register(2)

TBD

TBDTBDTBDTBDTBD

80

TBDTBDTBDTBDTBDTBD

%%%%%μsμA

ACCHSI

Accuracy of the HSI oscillatorFactory-calibrated

TA = –40 to 105°CTA = –10 to 85°CTA = 0 to 70°CTA = 25°C

tsu(HSI)IDD(HSI)

HSI oscillator startup timeHSI oscillator

power consumption

1.VDD = 3.3V, TA = –40 to 105°C unless otherwise specified.

2.Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from the

ST website www.st.com.

Low-speed internal (LSI) RC oscillator

Table 27.

SymbolfLSI(2)tsu(LSI)(3)IDD(LSI)(3)

Frequency

LSI oscillator startup timeLSI oscillator power consumption

LSI oscillator characteristics (1)

Parameter

Min30

Typ32850.65

Max60TBDTBD

UnitkHz μsμA

1.VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.2.Based on characterization, not tested in production.3.Guaranteed by design, not tested in production.

5.3.8 Wakeup time from low-power mode

The wakeup times given in Table28 is measured on a wakeup phase with a 16MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

●●

Stop or Standby mode: the clock source is the RC oscillator

Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table10.

Doc ID 15818 Rev 571/147

Electrical characteristics

Table 28.

STM32F205xx, STM32F207xx

Low-power mode wakeup timings

Parameter

Wakeup from Sleep mode

Wakeup from Stop mode (regulator in run mode)

Typ1915110200

μsμsUnitμs

SymboltWUSLEEP(1)

tWUSTOP(1)

Wakeup from Stop mode (regulator in low power mode)Wakeup from Stop mode (regulator in low power mode and Flash memory in Deep power down mode)Wakeup from Standby mode

tWUSTDBY(1)

1.The wakeup times are measured from the wakeup event to the point in which the user application code

reads the first instruction.

5.3.9 PLL characteristics

The parameters given in Table29 and Table30 are derived from tests performed under

temperature and VDD supply voltage conditions summarized in Table10.

Table 29.

SymbolfPLL_INfPLL_OUTfPLL48_OUTfVCO_OUTtLOCKJitterIDD(PLL)IDDA(PLL)

Main PLL characteristics

Parameter

PLL input clock(2)

PLL multiplier output clock48 MHz PLL multiplier output clockPLL VCO outputPLL lock timeCycle-to-cycle jitter

PLL power consumption on VDDPLL power consumption on VDDA

System clock 120MHzVCO freq = 192MHzVCO freq = 432MHzVCO freq = 192MHzVCO freq = 432MHz

TBCTBC192

Conditions

Min(1)Typ(1)0.9524

1

Max(1)2.0012048432350300TBCTBC

UnitMHzMHzMHzMHzμspsmAmA

1.Based on characterization, not tested in production.

2.Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared

between PLL and PLLI2S.

Table 30.

SymbolfPLLI2S_INfPLLI2S_OUTfVCO_OUTtLOCKJitter

PLLI2S (audio PLL) characteristics

Parameter

PLLI2S input clock(2)

PLLI2S multiplier output clockPLLI2S VCO outputPLLI2S lock timeCycle-to-cycle jitter

System clock 120MHz

192

Conditions

Min(1)Typ(1)0.95

1

Max(1)1.05216432350300

UnitMHzMHzMHzμsps

72/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxTable 30.

Symbol

Electrical characteristics

PLLI2S (audio PLL) characteristics (continued)

Parameter

Conditions

Cycle to cycle at 12,343KHz

on 48KHz periodN=432, P=4, R=5Average frequency of 12,343KHz

N=432, P=4, R=5on 256 samplesCycle to cycle at 48KHzon 1000 samplesCycle to cycle at 50MHzon 1000 samplesCycle to cycle at 1MHzon 1000 samplesVCO freq = 192MHzVCO freq = 432MHzVCO freq = 192MHzVCO freq = 432MHz

Min(1)Typ(1)

Max(1)

Unit

JitterMaster I2S clock jitterTBCTBCps

JitterMaster I2S clock jitterTBCTBCps

JitterJitterJitterIDD(PLLI2S)IDDA(PLLI2S)

WS I2S clock jitter

Main Clock Output for EthernetBit Time CAN Jitter

PLLI2S power consumption on VDD

PLLI2S power consumption on VDDA

TBCTBCTBCTBCTBC

TBCTBCTBCTBCTBC

pspspsmAmA

1.Based on characterization, not tested in production.

2.Take care of using the appropriate division factor M to have the specified PLL input clock values.

5.3.10 PLL spread spectrum clock generation (SSCG) characteristics

The spread spectrum clock generation (SSCG) feature is only available on the main PLL. Table 31.

SSCG parameters constraint

ParameterModulation frequencyPeak modulation depth

0.5Min

Typ

Max102215?1

UnitKHzdecdec

SymbolfModmd

MODEPER * INCSTEP

Equation 1

The frequency modulation period (MODEPER) is given by the equation below:

MODEPER=round[fPLL_IN?(4×fMod)]

Equation 2

Doc ID 15818 Rev 573/147

Electrical characteristicsSTM32F205xx, STM32F207xxEquation 2 allows to calculate the increment step (INCSTEP):

INCSTEP=round[((215–1)×md×fVCO_OUT)?(100×5×MODEPER)]

An amplitude quantization error may be generated because the linear modulation profile is

obtained by taking the quantized values (rounded to the nearest integer) of MODPER and

INCSTEP. As a result, the achieved modulation depth is quantized. The percentage

quantized modulation depth is given by the following formula:

mdquantized%=(MODEPER×INCSTEP×100×5)?((215–1)×fVCO_OUT)

Figure25 and Figure26 show the main PLL output clock waveforms in center spread and

down spread modes, where:

F0 is fPLL_OUT nominal.

Tmode is the modulation period.

md is the modulation depth.

74/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxElectrical characteristics

5.3.11 Memory characteristics

Flash memory

The characteristics are given at TA = –40 to 105 °C unless otherwise specified.Table 32.

Symbol

Flash memory characteristics

Parameter

Conditions

Read mode

fHCLK = 120MHz with 3 wait states, VDD = 3.3 V

Min

MaxTBD

UnitmA

IDD

Supply current

Write / Erase modes

fHCLK = 120MHz, VDD = 3.3VPower-down mode / Halt,VDD = 3.0 to 3.6 V

TBDTBD

mAμA

Table 33.

Symboltprog

Flash memory programming

Parameter

Word programming time

Conditions

Min(1)

Typ12400

TA = –40 to +105 °C

7001

TBD

32-bit program operation

2.72.11.8

TBD3.63.63.6Max(1)Unit100

μsmsmssmsVVV

tERASE16KBSector (16 KB) erase timetERASE64KBSector (64 KB) erase timetERASE128KBSector (128 KB) erase time

tME

Mass erase time

Vprog

Programming voltage16-bit program operation8-bit program operation

1.Guaranteed by design, not tested in production.

Table 34.

SymboltprogtERASE16KBtERASE64KB

Flash memory programming with VPP

Parameter

Double word programmingSector (16 KB) erase timeSector (64 KB) erase time

Conditions

Min(1)

Typ7TBDTBDTBDTBD

TA = 0 to +40°C

2.7710

13.69

VVmAhour

Max(1)60

Unitμs

tERASE128KBSector (128 KB) erase time

tMEVprogVPPIPPtVPP(2)

Mass erase timeProgramming voltageVPP voltage rangeMinimum current sunk on the VPP pin

Cumulative time during which VPP is applied

Doc ID 15818 Rev 575/147

Electrical characteristicsSTM32F205xx, STM32F207xx1.Guaranteed by design, not tested in production.

2.VPP should only be connected during programming/erasing.

Table 35.

SymbolFlash memory endurance and data retentionValueParameter Conditions

Min

TA = –40 to +85 °C (6 suffix versions)

TA = –40 to +105 °C (7 suffix versions)

1 kcycle(2) at TA = 85 °C

1 kcycle(2) at TA = 105 °C

10 kcycles(2) at TA = 55 °C(1)UnitTypMaxkcyclesNENDEndurance10301020tRETData retentionYears

1.Based on characterization, not tested in production.

2.Cycling performed over the whole temperature range.

5.3.12 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the

device is stressed by two electromagnetic events until a failure occurs. The failure is

indicated by the LEDs:

●Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS

through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant

with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in Table36. They are based on the EMS levels and classes

defined in application note AN1709.

Table 36.

Symbol EMS characteristicsParameterConditionsLevel/

Class

2BVFESDV= 3.3 V, LQFP100, TA = +25°C, Voltage limits to be applied on any I/O pin to DD fHCLK = 75 MHz, conforms to induce a functional disturbanceIEC61000-4-2

Fast transient voltage burst limits to be

applied through 100 pF on VDD and VSS pins to induce a functional disturbanceVDD = 3.3 V, LQFP100, TA = +25°C, fHCLK = 75 MHz, conforms to

IEC61000-4-2VEFTB4A

76/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxElectrical characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.Software recommendations

The software flowchart must include the management of runaway conditions such as:

●●●

Corrupted program counterUnexpected reset

Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Table 37.

Symbol

EMI characteristics

Parameter

Conditions

Monitoredfrequency band0.1 to 30 MHz

Max vs. [fHSE/fHCLK]8/48 MHz

926254

8/72 MHz

913314

-dBμVUnit

SEMI

Peak level

VDD = 3.3V, TA = 25°C,LQFP100 package

compliant with IEC61967-2

30 to 130 MHz130 MHz to 1GHzSAE EMI Level

5.3.13 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Doc ID 15818 Rev 577/147

Electrical characteristicsTable 38.

SymbolVESD(HBM)VESD(CDM)

STM32F205xx, STM32F207xx

ESD absolute maximum ratings

Ratings

Electrostatic discharge voltage (human body model)

Electrostatic discharge voltage (charge device model)

Conditions

TA = +25 °C conforming to JESD22-A114

TA = +25 °C conforming to JESD22-C101

ClassMaximum value(1)2II

2000

V

500

Unit

1.Based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

●●

A supply overvoltage is applied to each power supply pin

A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 39.

SymbolLU

Electrical sensitivities

Parameter

Static latch-up class

Conditions

TA = +105 °C conforming to JESD78A

ClassII level A

5.3.14 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in Table40 are derived from tests

performed under the conditions summarized in Table10. All I/Os are CMOS and TTL compliant.

Table 40.

SymbolVILVIHVIL

I/O static characteristics

Parameter

ConditionsTTL ports2.7V≤VDD≤3.6VCMOS ports 1.65V≤VDD≤3.6VCMOS ports 1.65V≤VDD≤3.6VCMOS ports 2.0V≤VDD≤3.6V

2005% VDD(3)

MinVSS–0.3

22–0.3

Typ

Max0.8VDD+0.35.5V0.3 VDDVDD+0.3

0.7 VDD

5.255.5

mVmVVUnit

Input low level voltage

Standard I/O input high level voltageFT(1) I/O input high level voltageInput low level voltage

Standard I/O high level voltage

VIH

FT(1) I/O input high level voltage

Vhys

Standard IO Schmitt trigger voltage hysteresis(2)

IO FT Schmitt trigger voltage hysteresis(2)

78/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxTable 40.

SymbolIlkg

Electrical characteristics

I/O static characteristics (continued)

Parameter

ConditionsVSS≤VIN≤VDD

VIN= 5 VVIN = VSS

308

VIN = VDD

308

401140115

Min

Typ

Max±1350155015

pFkΩUnitμA

Standard I/O input leakage current (4)FT I/O input leakage

(4)

RPU

All pins except for

Weak pull-up equivalent PA10 and PB12resistor(5)

PA10 and PB12Weak pull-down equivalent resistor(5)I/O pin capacitance

All pins except for PA10 and PB12PA10 and PB12

RPDCIO(6)

1.FT = Five-volt tolerant.

2.Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.3.With a minimum of 100 mV.

4.Leakage could be higher than max. if negative current is injected on adjacent pins.

5.Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This

MOS/NMOS contribution to the series resistance is minimum (~10% order).6.Guaranteed by design, not tested in production.

All I/Os are CMOS and TTL compliant (no software configuration required), their characteristics consider the most strict CMOS-technology or TTL parameters:

For VIH:

– ifVDD is in the [2.00 V - 3.08 V] range: CMOS characteristics but TTL included– ifVDD is in the [3.08 V - 3.60 V] range: TTL characteristics but CMOS included

For VIL:

– ifVDD is in the [2.00 V - 2.28 V] range: TTL characteristics but CMOS included– ifVDD is in the [2.28 V - 3.60 V] range: CMOS characteristics but TTL included

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to +/-8mA, and sink +20mA (with a relaxed VOL).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section5.2:

The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run

consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table8).

The sum of the currents sunk by all the I/Os on VSS plus the maximum Run

consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table8).

Output voltage levels

Unless otherwise specified, the parameters given in Table41 are derived from tests

performed under ambient temperature and VDD supply voltage conditions summarized in Table10. All I/Os are CMOS and TTL compliant.

Doc ID 15818 Rev 579/147

Electrical characteristics

Table 41.

SymbolVOL(2)VOH(3)VOL (2)VOH (3)VOL(2)(4)VOH(3)(4)VOL(2)(4)VOH(3)(4)

STM32F205xx, STM32F207xx

Output voltage characteristics(1)

Parameter

Output low level voltage for an I/O pin when 8 pins are sunk at same timeOutput high level voltage for an I/O pin when 8 pins are sourced at same timeOutput low level voltage for an I/O pin when 8 pins are sunk at same timeOutput high level voltage for an I/O pin when 8 pins are sourced at same timeOutput low level voltage for an I/O pin when 8 pins are sunk at same timeOutput high level voltage for an I/O pin when 8 pins are sourced at same timeOutput low level voltage for an I/O pin when 8 pins are sunk at same time Output high level voltage for an I/O pin when 8 pins are sourced at same time

ConditionsTTL portIIO = +8 mA2.7 V < VDD < 3.6VCMOS portIIO =+ 8mA2.7 V < VDD < 3.6V

Min

Max0.4

V

VDD–0.4

0.4

V

2.4

1.3

V

VDD–1.3

0.4

V

VDD–0.4

Unit

IIO = +20 mA2.7 V < VDD < 3.6V

IIO = +6 mA2 V < VDD < 2.7 V

1.PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited

amount of current (3mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).2.The IIO current sunk by the device must always respect the absolute maximum rating specified in Table8

and the sum of IIO (I/O ports and control pins) must not exceed IVSS.3.The IIO current sourced by the device must always respect the absolute maximum rating specified in

Table8 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.4.Based on characterization data, not tested in production.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in Figure27 and Table42, respectively.

Unless otherwise specified, the parameters given in Table42 are derived from tests

performed under the ambient temperature and VDD supply voltage conditions summarized in Table10.

Table 42.

OSPEEDRy[1:0] bit value(1)

I/O AC characteristics(1)

SymbolParameterConditions

CL = 50pF, VDD = 1.8 V to 3.6V

CL = 50pF, VDD = 1.8 V to 3.6V

MinTypMaxUnit

fmax(IO)outMaximum frequency(2)

00

tf(IO)outtr(IO)out

Output high to low level fall time

Output low to high level rise time

2TBD(3)TBD

(3)

MHz

ns

80/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxTable 42.

OSPEEDRy[1:0] bit value(1)

Electrical characteristics

I/O AC characteristics(1) (continued)

Symbol

Parameter

Conditions

CL = 50pF, VDD < 2.7 VCL = 10pF, VDD > 2.7 VCL = 50pF, VDD < 2.7 VCL = 10pF, VDD > 2.7 VCL = 50pF, VDD < 2.7 VCL = 10pF, VDD > 2.7 V

CL = 50pF, 2.4 < VDD < 2.7 V50(4)CL = 10pF, VDD > 2.7 VCL = 50 pF, 2.4 < VDD < 2.7 VCL = 10 pF, VDD > 2.7 VCL = 50 pF, 2.4 < VDD < 2.7 VCL = 10 pF, VDD > 2.7 V

CL = 20 pF, 2.4 < VDD < 2.7 V100(4)CL = 10 pF, VDD > 2.7 VCL = 20 pF, 2.4 < VDD < 2.7 VCL = 10 pF, VDD > 2.7 VCL = 20 pF, 2.4 < VDD < 2.7 VCL = 10 pF, VDD > 2.7 V

10100(4)50(4)Min2525

Typ

MaxTBD50(4)TBD(3)TBD(3)TBD(3)TBD(3)TBD100(4)TBD(3)TBD(3)TBD(3)TBD(3)TBD200(4)TBD(3)TBD(3)TBD(3)TBD(3)

nsnsMHzMHznsMHzMHznsUnitMHzMHz

fmax(IO)outMaximum frequency(2)

Output high to low level fall time

Output low to high level rise time

01

tf(IO)out

tr(IO)out

fmax(IO)outMaximum frequency(2)

Output high to low level fall time

Output low to high level rise time

(2)

10

tf(IO)out

tr(IO)out

Fmax(IO)outMaximum frequency

11

tf(IO)out

Output high to low level fall time

Output low to high level rise time

Pulse width of external signals detected by the EXTI controller

tr(IO)out

-

tEXTIpw

1.The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F20/21xxx reference manual for a

description of the GPIOx_SPEEDR GPIO port output speed register.2.The maximum frequency is defined in Figure27.3.Guaranteed by design, not tested in production.

4.For maximum frequencies above 50MHz, it is required to use the compensation cell.

Doc ID 15818 Rev 581/147

Electrical characteristics

STM32F205xx, STM32F207xx

5.3.15 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up

resistor, RPU (see Table40).

Unless otherwise specified, the parameters given in Table43 are derived from tests

performed under the ambient temperature and VDD supply voltage conditions summarized in Table10. Table 43.

SymbolVIL(NRST)(1)

NRST pin characteristics

Parameter

NRST Input low level voltage

Conditions

Min–0.52

200

VIN = VSS

30

40

50100

VDD > 2.7 VInternal Reset source

30020

Typ

Max0.8VDD+0.5

UnitVmVkΩnsnsμs

VIH(NRST)(1)NRST Input high level voltageVhys(NRST)

RPUVF(NRST)(1)

NRST Schmitt trigger voltage hysteresis

Weak pull-up equivalent resistor(2)NRST Input filtered pulse

VNF(NRST)(1)NRST Input not filtered pulseTNRST_OUT

Generated reset pulse duration

1.Guaranteed by design, not tested in production.

2.The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution

to the series resistance must be minimum (~10% order).

82/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xx

Electrical characteristics

2.The reset network protects the device against parasitic resets.

3.The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in

Table43. Otherwise the reset is not taken into account by the device.

5.3.16 TIM timer characteristics

The parameters given in Table44 and Table45 are guaranteed by design.

Refer to Section5.3.14: I/O port characteristics for details on the input/output alternate

function characteristics (output compare, input capture, external clock, PWM output).Table 44.

Symboltres(TIM)

Characteristics of TIMx connected to the APB1 domain(1)

Parameter

Timer resolution timeTimer external clock

frequency on CH1 to CH4Timer resolution

= 60 MHz f

16-bit counter clock period TIMxCLK1when internal clock is APB1= 30MHz

0.0167selected

32-bit counter clock period

when internal clock is selected

10.0167

7158278865536 × 65536

71.6

Conditions

Min116.700

fTIMxCLK/2

3616655361092Max

UnittTIMxCLK

nsMHzMHzbittTIMxCLK

μstTIMxCLK

μstTIMxCLK

s

fEXTResTIM

tCOUNTER

tMAX_COUNTMaximum possible count

1.TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers.

Doc ID 15818 Rev 583/147

Electrical characteristics

Table 45.

Symboltres(TIM)

STM32F205xx, STM32F207xx

Characteristics of TIMx connected to the APB2 domain(1)

Parameter

Timer resolution timeTimer external clock

frequency on CH1 to CH4Timer resolution

16-bit counter clock period when internal clock is selected

fTIMxCLK = 120MHzAPB2 = 60MHz

10.0083

Conditions

Min18.300

fTIMxCLK/2

30166553654665536 × 65536

35.79Max

UnittTIMxCLK

nsMHzMHzbittTIMxCLK

μstTIMxCLK

s

fEXTResTIMtCOUNTER

tMAX_COUNTMaximum possible count

1.TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers.

84/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxElectrical characteristics

5.3.17 Communications interfaces

I2C interface characteristics

Unless otherwise specified, the parameters given in Table46 are derived from tests

performed under the ambient temperature, fPCLK1 frequency and VDD supply voltage conditions summarized in Table10.

The STM32F20x and STM32F205xx I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present.

The I2C characteristics are described in Table46. Refer also to Section5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).Table 46.

Symboltw(SCLL)tw(SCLH)tsu(SDA)th(SDA)tr(SDA)tr(SCL)tf(SDA)tf(SCL)th(STA)tsu(STA)tsu(STO)tw(STO:STA)

Cb

I2C characteristics

Standard mode I2C(1)

Parameter

Min

SCL clock low timeSCL clock high timeSDA setup timeSDA data hold timeSDA and SCL rise timeSDA and SCL fall timeStart condition hold timeRepeated Start condition setup time

Stop condition setup timeStop to Start condition time (bus free)

Capacitive load for each bus line

4.04.74.04.7

400

4.74.02500(3)

1000300

0.60.6 0.6 1.3

400

μsμsμspF

Max

Min1.3 0.6 100 0(4)20 + 0.1Cb

900(3)300300

ns

Max

μs

Fast mode I2C(1)(2)

Unit

1.Guaranteed by design, not tested in production.

2.fPCLK1 must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be

higher than 4 MHz to achieve the maximum fast mode I2C frequency.3.The maximum hold time of the Start condition has only to be met if the interface does not stretch the low

period of SCL signal.4.The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the

undefined region of the falling edge of SCL.

Doc ID 15818 Rev 585/147

Electrical characteristicsSTM32F205xx, STM32F207xx

21.Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.

Table 47.

SCL frequency (fPCLK1= 30 MHz.,VDD = 3.3 V)(1)(2)

I2C_CCR value

fSCL (kHz)4003002001005020

RP = 4.7 kΩ0x80190x80210x80320x00960x012C0x02EE

1.RP = External pull-up resistance, fSCL = I2C speed,

2.For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the

tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application.

86/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxElectrical characteristics

I2S - SPI interface characteristics

Unless otherwise specified, the parameters given in Table48 for SPI or in Table49 for I2S are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table10.

Refer to Section5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S).Table 48.

SymbolfSCK1/tc(SCK)tr(SCK)tf(SCK)DuCy(SCK)tsu(NSS)(2)th(NSS)(2)tw(SCKH)(2)tw(SCKL)(2)tsu(MI) (2) tsu(SI)(2)th(MI) (2) th(SI)(2)ta(SO)(2)(3)tdis(SO)(2)(4)tv(SO) (2)(1)tv(MO)(2)(1)th(SO)(2)th(MO)(2)

SPI characteristics(1)

ParameterSPI clock frequency

Conditions

Master modeSlave mode

Min

Max30 30 8

304 tPCLK2 tPCLK 505554 02

3 tPCLK1025 5

152

ns

6070

UnitMHzns%

SPI clock rise and fall

Capacitive load: C = 30 pF

time

SPI slave input clock duty cycleNSS setup time NSS hold timeSCK high and low timeData input setup time

Slave modeSlave modeSlave mode

Master mode, fPCLK = 36 MHz, presc = 4Master modeSlave modeMaster modeSlave mode

Slave mode, fPCLK = 20 MHzSlave mode

Slave mode (after enable edge)Master mode (after enable edge)Slave mode (after enable edge)Master mode (after enable edge)

Data input hold timeData output access time

Data output disable time

Data output valid timeData output valid timeData output hold time

1.Remapped SPI1 characteristics to be determined.2.Based on characterization, not tested in production.

3.Min time is for the minimum time to drive the output and the max time is for the maximum time to validate

the data.4.Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put

the data in Hi-Z

Doc ID 15818 Rev 587/147

Electrical characteristics

STM32F205xx, STM32F207xx

(1)

1.Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.

88/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xx(1)

Electrical characteristics

1.Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.

Doc ID 15818 Rev 589/147

Electrical characteristics

Table 49.

SymbolfCK

1/tc(CK)tr(CK)tf(CK)tv(WS) (2)th(WS) (2)tsu(WS) (2)th(WS) (2)tw(CKH) (2)tw(CKL) (2)tsu(SD_MR) (2)tsu(SD_SR) (2)th(SD_MR)(2)(3)th(SD_SR) (2)(3)th(SD_MR) (2)th(SD_SR) (2)tv(SD_ST) (2)(3)

STM32F205xx, STM32F207xx

I2S characteristics(1)

Parameter

I2S clock frequencyI2S clock rise and fall timeWS valid time WS hold timeWS setup time WS hold timeCK high and low timeData input setup timeData input hold timeData input hold time

ConditionsMasterSlave

capacitive load CL=50 pFMasterMasterSlaveSlave

Master fPCLK= TBD, presc = TBDMaster receiverSlave receiverMaster receiverSlave receiverMaster fPCLK = TBDSlave fPCLK = TBDSlave transmitter (after enable edge) fPCLK = TBD

TBDTBDTBDTBD TBD TBDTBD TBDTBD TBDTBD

TBD TBD

TBD

TBD

TBD TBD

TBD

Min TBD0

Max TBD TBD TBD

UnitMHz

ns

Data output valid time

th(SD_ST) (2)

Data output hold time

Slave transmitter (after enable edge)Master transmitter (after enable edge)fPCLK = TBD

tv(SD_MT) (2)(3)

Data output valid time

th(SD_MT) (2)

Data output hold time

Master transmitter (after enable edge)

1.TBD = to be determined.

2.Based on design simulation and/or characterization results, not tested in production.3.Depends on fPCLK. For example, if fPCLK=8 MHz, then TPCLK = 1/fPLCLK =125 ns.

90/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xx

2(1)

Electrical characteristics

1.Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD.

2.LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first

byte.

2(1)

1.Based on characterization, not tested in production.

2.LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first

byte.

Doc ID 15818 Rev 591/147

Electrical characteristicsSTM32F205xx, STM32F207xx

USB OTG FS characteristics

The USB OTG interface is USB-IF certified (Full-Speed). This interface is present in both the USB OTG HS and USB OTG FS controllers.Table 50.

tSTARTUP(1)

USB OTG FS startup time

Parameter

USB OTG FS transceiver startup time

Max1

Unitμs

Symbol

1.Guaranteed by design, not tested in production.

Table 51.

Symbol

USB OTG FS DC electrical characteristics

Parameter

USB OTG FS operating voltage

I(USB_FS_DP/DM, USB_HS_DP/DM) Includes VDI range

Conditions

Min.(1)Typ.Max.(1)Unit3.0(2)0.20.81.3

RL of 1.5kΩ to 3.6V(4)RL of 15

kΩ to VSS(4)

2.817

VIN = VDD

0.65

1.1

2.0

VIN = VSSVIN = VSS

1.5

1.8

2.1

21

2.52.00.33.624

VV

3.6

V

VDD

Input levels

VDI(3)Differential input sensitivityVCM(3)VSE(3)

Differential common mode range

Single ended receiver threshold

Static output level lowStatic output level highPA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM) PA9, PB13

(OTG_FS_VBUS, OTG_HS_VBUS)

PA12, PB15 (USB_FS_DP, USB_HS_DP)

Output levels

VOLVOH

RPD

RPU

PA9, PB13

(OTG_FS_VBUS, OTG_HS_VBUS)

0.250.370.55

1.All the voltages are measured from the local ground potential.

2.The STM32F20x and STM32F205xx USB OTG FS functionality is ensured down to 2.7 V but not the full

USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.3.Guaranteed by design, not tested in production.4.RL is the load connected on the USB OTG FS drivers

92/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxElectrical characteristics

Doc ID 15818 Rev 593/147

Electrical characteristics

Table 52.

STM32F205xx, STM32F207xx

USB OTG FS electrical characteristics(1)

Driver characteristics

Symbol

trtftrfmVCRS

Parameter

Rise time(2)Fall timeRise/ fall time matchingOutput signal crossover voltage

ConditionsCL = 50 pF CL = 50 pF

tr/tf

Min44901.3

Max20201102.0

Unitnsns%V

1.Guaranteed by design, not tested in production.

2.Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB

Specification - Chapter 7 (version 2.0).

USB HS characteristics

Table 53.

Clock timing parameters

Parameter(1)

Symbol

8-bit ±10%

FSTART_8BITFSTEADYDSTART_8BITDSTEADY

Min5459.974049.975

Nominal60605050

Max6660.036050.0251.45.6

UnitMHzMHz%%msmsμspsns

Frequency (first transition)

Frequency (steady state) ±500ppmDuty cycle (first transition)

8-bit ±10%

Duty cycle (steady state) ±500ppm

Time to reach the steady state frequency and

TSTEADY

duty cycle after the first transitionClock startup time after the de-assertion of SuspendM

PeripheralHost

TSTART_DEVTSTART_HOST

PHY preparation time after the first transition

TPREP

of the input clockJitterRise timeFall time

1.Guaranteed by design, not tested in production.

TJITTERTRISETFALL

94/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xx

Electrical characteristics

Table 54.

ULPI timing

Value(1)

Parameter

Setup time (control in)

Symbol

Min.

tSC, tSDtHC, tHDtDC, tDDtSC, tSDtHC, tHDtDC, tDD

1.5

6.0

0.0

9.03.0Max.6.0

nsnsnsnsnsnsUnit

Output clockHold time (control in)Output delay (control out)Setup time (control in)

Input clock (optional)

Hold time (control in)Output delay (control out)

1.VDD = 3V to 3.6V and TA = –40 to 85°C.

Ethernet characteristics

Table55 shows the Ethernet operating voltage.Table 55.

Ethernet DC electrical characteristics

Parameter

VDD

Ethernet operating voltage

Min.(1)3.0

Max.(1)3.6

UnitV

Symbol

Input level

1.All the voltages are measured from the local ground potential.

Table56 gives the list of Ethernet MAC signals for the SMI (station management interface) and Figure37 shows the corresponding timing diagram.

Doc ID 15818 Rev 595/147

Electrical characteristics

STM32F205xx, STM32F207xx

Table 56.

SymboltMDCtd(MDIO)th(MDIO)

Dynamics characteristics: Ethernet MAC signals for SMI(1)

Rating

MDC cycle time (1.71MHz, AHB = 72MHz)MDIO write data valid time

MinTBDTBDTBDTBD

TypTBDTBDTBDTBD

MaxTBDTBDTBDTBD

Unitnsnsnsns

tsu(MDIO)Read data setup time

Read data hold time

1.TBD stands for to be determined.

Table57 gives the list of Ethernet MAC signals for the RMII and Figure38 shows the corresponding timing diagram.

Table 57.

Symboltsu(RXD)tih(RXD)tsu(CRS)tih(CRS)td(TXEN)td(TXD)

Dynamics characteristics: Ethernet MAC signals for RMII(1)

Rating

Receive data setup timeReceive data hold timeCarrier sense set-up timeCarrier sense hold timeTransmit enable valid delay timeTransmit data valid delay time

MinTBDTBDTBDTBD00

TypTBDTBDTBDTBD9.69.9

MaxTBDTBDTBDTBD21.921

Unitnsnsnsnsnsns

1.TBD stands for to be determined.

96/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxElectrical characteristics

Table58 gives the list of Ethernet MAC signals for MII and Figure38 shows the corresponding timing diagram.

Table 58.

Symboltsu(RXD)tih(RXD)tsu(DV)tih(DV)tsu(ER)tih(ER)td(TXEN)td(TXD)

Dynamics characteristics: Ethernet MAC signals for MII(1)

Rating

Receive data setup timeReceive data hold timeData valid setup timeData valid hold timeError setup timeError hold time

Transmit enable valid delay timeTransmit data valid delay time

MinTBDTBDTBDTBDTBDTBD13.412.9

TypTBDTBDTBDTBDTBDTBD15.516.1

MaxTBDTBDTBDTBDTBDTBD17.719.4

Unitnsnsnsnsnsnsnsns

1.TBD stands for to be determined.

CAN (controller area network) interface

Refer to Section5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CANTX and CANRX).

Doc ID 15818 Rev 597/147

Electrical characteristicsSTM32F205xx, STM32F207xx

5.3.18 12-bit ADC characteristics

Unless otherwise specified, the parameters given in Table59 are derived from tests

performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table10.

Table 59.

SymbolVDDAVREF+IVREFfADCfTRIG(1)VAINRAIN(1)RADC(1)CADC(1)tlat(1)tlatr(1)tS(1)tSTAB(1)

ADC characteristics

Parameter

Power supply

Positive reference voltageCurrent on the VREF input pinADC clock frequency

VDDA = 1.8 to 2.4VVDDA = 2.4 to 3.6VfADC = 30 MHz

0 (VSSA or VREF- tied to ground)

See Equation 1 for

details

0.60.6

Conditions

Min1.81.65

160(1)Typ

Max3.6VDDA220(1)153082317VREF+501

fADC = 30MHzfADC = 30MHzfADC = 30MHz

0.10030

fADC = 30MHz12-bit resolutionfADC = 30MHz10-bit resolution

0.50.430.370.3

80.1003(3)0.0672(3)16480116.4016.3416.2716.20

UnitVVμAMHzMHzkHz1/fADCVkΩkΩpFμs1/fADCμs1/fADCμs1/fADCμsμsμsμsμs1/fADC

External trigger frequencyConversion voltage range(2)External input impedanceSampling switch resistanceInternal sample and hold capacitor

Injection trigger conversion latency

Regular trigger conversion latency

Sampling time Power-up time

tCONV(1)

Total conversion time (including sampling time)

fADC = 30MHz8-bit resolutionfADC = 30MHz6-bit resolution

9 to 492 (tS for sampling +n-bit resolution for successive approximation)

98/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxTable 59.

Symbol

Electrical characteristics

ADC characteristics (continued)

Parameter

Conditions12-bit resolutionSingle ADC

Min

Typ

Max2

UnitMsps

fS(1)

Sampling rate (fADC = 30 MHz)

12-bit resolutionInterleave Dual ADC

mode12-bit resolutionInterleave Triple ADC

modefADC = 30 MHz3 sampling time12-bit resolutionfADC = 30 MHz480 sampling time12-bit resolutionfADC = 30 MHz3 sampling time12-bit resolutionfADC = 30 MHz480 sampling time12-bit resolution

4Msps

6Msps

TBDμA

IVREF+

ADC VREF DC current

consumption in conversion mode

TBDμA

TBDμA

IDDA

ADC VDDA DC current

consumption in conversion mode

TBDμA

1.Based on characterization, not tested in production.

2.VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.

3.For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table59.

Equation 1: RAIN max formula

The formula above (Equation 1) is used to determine the maximum external impedance allowed for anerror below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Table 60.

SymbolETEOEGEDEL

a

ADC accuracy (1)

Parameter

Total unadjusted errorOffset errorGain error

Differential linearity errorIntegral linearity error

fPCLK2 = 60 MHz,

fADC = 30 MHz, RAIN < 10 kΩ, VDDA = 1.8 V to 3.6 V

Test conditions

Typ±2±1.5±1.5±1±1.5

Max(2)±5±2.5±3±2±3

LSBUnit

1.Better performance could be achieved in restricted VDD, frequency and temperature ranges.2.Based on characterization, not tested in production.

Note:

ADC accuracy vs. negative injection current: Injecting a negative current on any of the

standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to

Doc ID 15818 Rev 599/147

Electrical characteristicsSTM32F205xx, STM32F207xx

add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative currents.

Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section5.3.14 does not affect the ADC accuracy.

1.Refer to Table59 for the values of RAIN, RADC and CADC.

2.Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the

pad capacitance (roughly 7pF). A high Cparasitic value downgrades conversion accuracy. To remedy this, fADC should be reduced.

100/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxElectrical characteristics

General PCB design guidelines

Power supply decoupling should be performed as shown in Figure42 or Figure43,

depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be

ceramic (good quality). They should be placed them as close as possible to the chip.

1.VREF+ and VREF– inputs are available only on 100-pin packages.

1.VREF+ and VREF– inputs are available only on 100-pin packages.

Doc ID 15818 Rev 5101/147

Electrical characteristicsSTM32F205xx, STM32F207xx

5.3.19 DAC electrical specifications

Table 61.

SymbolVDDAVREF+VSSARLOAD(1)RO(1)

DAC characteristics

Parameter

Analog supply voltageReference supply voltageGround

Resistive load with buffer ONImpedance output with buffer

OFF

Min1.81.805

Typ

Max3.6 3.60

UnitVVVkΩ

When the buffer is OFF, the

Minimum resistive load between DAC_OUT and VSS to have a 1% accuracy is 1.5MΩ

Maximum capacitive load at

DAC_OUT pin (when the buffer is ON).

It gives the maximum output excursion of the DAC.

It corresponds to 12-bit input code (0x0E0) to (0xF1C) at VREF+ = 3.6V and (0x1C7) to (0xE38) at VREF+ = 1.8V

It gives the maximum output excursion of the DAC.

With no load, worst code (0xF1C) at VREF+ = 3.6V in terms of DC consumption on the inputsWith no load, middle code (0x800) on the inputs

With no load, worst code (0xF1C) at VREF+ = 3.6V in terms of DC consumption on the inputsGiven for the DAC in 10-bit configuration.

Given for the DAC in 12-bit configuration.

Given for the DAC in 10-bit configuration.

Given for the DAC in 12-bit configuration.VREF+ ≤ VDDA

Comments

15kΩ

CLOAD(1)

Capacitive load50pF

DAC_OUT Lower DAC_OUT voltage min(1)with buffer ONDAC_OUT Higher DAC_OUT voltage

with buffer ONmax(1)

DAC_OUT Lower DAC_OUT voltage

min(1)with buffer OFFDAC_OUT Higher DAC_OUT voltage

with buffer OFFmax(1)IVREF+

DAC DC VREF current consumption in quiescent mode (Standby mode)DAC DC VDDA current consumption in quiescent mode (Standby mode)

VDDA – 0.2

0.5

VREF+ – 1LSB

220

VmVV

μA

380μA

IDDA

480μA

DNL(2)

Differential non linearity Difference between two consecutive code-1LSB)Integral non linearity (difference between

measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)

±1

LSB

INL(2)

±4LSB

102/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxTable 61.

Symbol

Electrical characteristics

DAC characteristics (continued)

Parameter

Offset error

(difference between

measured value at Code (0x800) and the ideal value = VREF+/2)Gain error

Min

Typ

Max±10±3±12±0.5

UnitmVLSBLSB%

Comments

Given for the DAC in 12-bit configuration

Given for the DAC in 10-bit at VREF+ = 3.6V

Given for the DAC in 12-bit at VREF+ = 3.6V

Given for the DAC in 12bit configuration

Offset(2)

Gain error(2)

Settling time (full scale: for a 10-bit input code transition between the lowest and the

tSETTLING(2)

highest input codes when DAC_OUT reaches final value ±4LSBTHD(2)

Total Harmonic DistortionBuffer ON

Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)Wakeup time from off state (Setting the ENx bit in the DAC Control register)Power supply rejection ratio (to VDDA) (static DC measurement)

34μs

pF,CLOAD ≤ 50

RLOAD ≥ 5 kΩ

dB

pF,CLOAD ≤ 50

RLOAD ≥ 5 kΩpF,CLOAD ≤ 50

RLOAD ≥ 5 kΩ

pF, RLOAD ≥ 5 kΩCLOAD ≤ 50

input code between lowest and highest possible ones.No RLOAD, CLOAD = 50 pF

Update

rate(1)

1MS/s

tWAKEUP(2)

6.510μs

PSRR+

(1)

dB

1.Guaranteed by design, not tested in production.

2.Guaranteed by characterization, not tested in production.

1.The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly

without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

Doc ID 15818 Rev 5103/147

Electrical characteristicsSTM32F205xx, STM32F207xx

5.3.20 Temperature sensor characteristics

Table 62.

SymbolTL(1)V25(1)tSTART(2)TS_temp

(3)(2)

TS characteristics

Parameter

VSENSE linearity with temperature

Min

Typ±12.50.76

416

10Max±2

Unit°CmV/°CVμsμs

Avg_Slope(1)Average slope

Voltage at 25 °CStartup time

ADC sampling time when reading the

temperature1°C accuracy

1.Based on characterization, not tested in production.2.Guaranteed by design, not tested in production.

3.Shortest sampling time can be determined in the application by multiple iterations.

5.3.21 VBAT monitoring characteristics

Table 63.

SymbolR(1)

VBAT monitoring characteristics

Parameter

Resistor bridge for VBATRatio on VBAT measurementError on Q

ADC sampling time when reading the VBAT1mV accuracy

-1TBDMin

TypTBD2

+1

%μs

Max

UnitKOhm

Q(1)

Er(1)TS_vbat(2)(2)

1.Guaranteed by design, not tested in production.

2.Shortest sampling time can be determined in the application by multiple iterations.

5.3.22 Embedded reference voltage

The parameters given in Table64 are derived from tests performed under ambient

temperature and VDD supply voltage conditions summarized in Table10.Table 64.

SymbolVREFINT

Embedded internal reference voltage

Parameter

Internal reference voltageADC sampling time when reading the internal reference voltage

Conditions–40 °C < TA < +105°C–40 °C < TA < +85°C

Min1.161.16

Typ 1.201.205.1

Max1.261.24TBD(2)

UnitVVμs

TS_vrefint

(1)

104/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xx

Table 64.

SymbolVRERINT(2)TCoeff(2)

Electrical characteristics

Embedded internal reference voltage

Parameter

Internal reference voltage spread over the temperature range

Temperature coefficient

ConditionsVDD = 3 V ±10 mV

Min

Typ

Max10100

UnitmVppm/°C

1.Shortest sampling time can be determined in the application by multiple iterations.2.Guaranteed by design, not tested in production.

5.3.23 FSMC characteristics

Asynchronous waveforms and timings

Figure45 through Figure48 represent asynchronous waveforms and Table65 through

Table68 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

●●●

AddressSetupTime = 0AddressHoldTime = 1DataSetupTime = 1

1.Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Doc ID 15818 Rev 5105/147

Electrical characteristics

Table 65.

Symboltw(NE)tv(NOE_NE)tw(NOE)th(NE_NOE)tv(A_NE)th(A_NOE)tv(BL_NE)th(BL_NOE)tsu(Data_NE)th(Data_NOE)th(Data_NE)tv(NADV_NE)tw(NADV)

1.CL = 15 pF.

2.Based on characterization, not tested in production.

STM32F205xx, STM32F207xx

Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1) (2)

Parameter

FSMC_NE low time

FSMC_NEx low to FSMC_NOE lowFSMC_NOE low time

Min5THCLK – 1.50.5

5THCLK – 1.5

Max5THCLK + 21.5

5THCLK + 1.57

0.1

2THCLK + 252THCLK + 2500

5

THCLK + 1.5

Unitnsnsnsnsnsnsnsnsnsnsnsnsnsns

FSMC_NOE high to FSMC_NE high hold time–1.5FSMC_NEx low to FSMC_A validAddress hold time after FSMC_NOE highFSMC_NEx low to FSMC_BL validFSMC_BL hold time after FSMC_NOE highData to FSMC_NEx high setup time

tsu(Data_NOE)Data to FSMC_NOEx high setup time

Data hold time after FSMC_NOE highData hold time after FSMC_NEx highFSMC_NEx low to FSMC_NADV lowFSMC_NADV low time

1.Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

106/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xx

Table 66.

Symboltw(NE)tv(NWE_NE)tw(NWE)th(NE_NWE)tv(A_NE)th(A_NWE)tv(BL_NE)th(BL_NWE)tv(Data_NE)th(Data_NWE)tv(NADV_NE)tw(NADV)

1.CL = 15 pF.

2.Based on characterization, not tested in production.

Electrical characteristics

Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)

Parameter

FSMC_NE low time

FSMC_NEx low to FSMC_NWE lowFSMC_NWE low time

FSMC_NWE high to FSMC_NE high hold timeFSMC_NEx low to FSMC_A validAddress hold time after FSMC_NWE highFSMC_NEx low to FSMC_BL valid

FSMC_BL hold time after FSMC_NWE highFSMC_NEx low to Data valid

Data hold time after FSMC_NWE highFSMC_NEx low to FSMC_NADV lowFSMC_NADV low time

THCLK

5.5THCLK + 1.5

THCLK – 0.5

THCLK + 7

THCLK

1.5

Min3THCLK – 1THCLK – 0.5THCLK – 0.5THCLK

7.5

Max3THCLK + 2THCLK + 1.5THCLK + 1.5

Unitnsnsnsnsnsnsnsnsnsnsnsns

Doc ID 15818 Rev 5107/147

Electrical characteristics

Table 67.

Symboltw(NE)tv(NOE_NE)tw(NOE)th(NE_NOE)tv(A_NE)tv(NADV_NE)tw(NADV)th(AD_NADV)th(A_NOE)th(BL_NOE)tv(BL_NE)tsu(Data_NE)th(Data_NE)th(Data_NOE)

1.CL = 15 pF.

2.Based on characterization, not tested in production.

STM32F205xx, STM32F207xx

Asynchronous multiplexed PSRAM/NOR read timings(1)(2)

Parameter

FSMC_NE low time

FSMC_NEx low to FSMC_NOE lowFSMC_NOE low time

FSMC_NOE high to FSMC_NE high hold timeFSMC_NEx low to FSMC_A validFSMC_NEx low to FSMC_NADV lowFSMC_NADV low time

FSMC_AD (address) valid hold time after FSMC_NADV high

Address hold time after FSMC_NOE highFSMC_BL hold time after FSMC_NOE highFSMC_NEx low to FSMC_BL validData to FSMC_NEx high setup timeData hold time after FSMC_NEx highData hold time after FSMC_NOE high

2THCLK + 242THCLK + 25003

THCLK –1.5THCLKTHCLK0

Min7THCLK – 24THCLK – 1–1

05

THCLK + 1.5

Max7THCLK + 24THCLK + 2

Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns

3THCLK – 0.53THCLK + 1.5 ns

tsu(Data_NOE)Data to FSMC_NOE high setup time

108/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxElectrical characteristics

Table 68.

Symboltw(NE)tv(NWE_NE)tw(NWE)th(NE_NWE)tv(A_NE)tv(NADV_NE)tw(NADV)th(AD_NADV)th(A_NWE)tv(BL_NE)th(BL_NWE)

Asynchronous multiplexed PSRAM/NOR write timings(1)(2)

Parameter

FSMC_NE low time

FSMC_NEx low to FSMC_NWE lowFSMC_NWE low time

FSMC_NWE high to FSMC_NE high hold timeFSMC_NEx low to FSMC_A validFSMC_NEx low to FSMC_NADV lowFSMC_NADV low time

FSMC_AD (address) valid hold time after FSMC_NADV high

Address hold time after FSMC_NWE highFSMC_NEx low to FSMC_BL valid

FSMC_BL hold time after FSMC_NWE high

THCLK – 1.5

THCLK + 1.5

THCLK – 53THCLK – 1THCLK – 34THCLK

1.6

Min5THCLK – 12THCLK2THCLK – 1THCLK – 1

75THCLK + 1

Max5THCLK + 22THCLK + 12THCLK + 2

Unitnsnsnsnsnsnsnsnsnsnsnsnsns

tv(Data_NADV)FSMC_NADV high to Data validth(Data_NWE)

1.CL = 15 pF.

2.Based on characterization, not tested in production.

Data hold time after FSMC_NWE high

Doc ID 15818 Rev 5109/147

Electrical characteristicsSTM32F205xx, STM32F207xx

Synchronous waveforms and timings

Figure49 through Figure52 represent synchronous waveforms and Table70 through

Table72 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

●●●●●

BurstAccessMode = FSMC_BurstAccessMode_Enable;MemoryType = FSMC_MemoryType_CRAM;WriteBurst = FSMC_WriteBurst_Enable;

CLKDivision = 1; (0 is not supported, see the STM32F20xxx/21xxx reference manual)DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM

110/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xx

Table 69.

Symboltw(CLK)td(CLKL-NExL)td(CLKH-NExH)td(CLKL-NADVL)td(CLKL-NADVH)td(CLKL-AV)td(CLKH-AIV)td(CLKL-NOEL)td(CLKH-NOEH)td(CLKL-ADV)td(CLKL-ADIV)tsu(ADV-CLKH)th(CLKH-ADV)

FSMC_CLK period

FSMC_CLK low to FSMC_NEx low (x = 0...2)FSMC_CLK high to FSMC_NEx high (x = 0...2)FSMC_CLK low to FSMC_NADV lowFSMC_CLK low to FSMC_NADV high

FSMC_CLK low to FSMC_Ax valid (x = 16...25)

5

Electrical characteristics

Synchronous multiplexed NOR/PSRAM read timings(1)(2)

Parameter

Min27.7

1.5

THCLK + 2

4Max

Unit ns ns ns ns ns

ns ns

THCLK +1

THCLK + 0.5

12

ns ns ns ns

FSMC_CLK high to FSMC_Ax invalid (x = 16...25)THCLK + 2FSMC_CLK low to FSMC_NOE lowFSMC_CLK high to FSMC_NOE highFSMC_CLK low to FSMC_AD[15:0] validFSMC_CLK low to FSMC_AD[15:0] invalidFSMC_A/D[15:0] valid data before FSMC_CLK high

6ns

ns ns ns

FSMC_A/D[15:0] valid data after FSMC_CLK highTHCLK – 10

82

tsu(NWAITV-CLKH)FSMC_NWAIT valid before FSMC_CLK highth(CLKH-NWAITV)

1.CL = 15 pF.

2.Based on characterization, not tested in production.

FSMC_NWAIT valid after FSMC_CLK high

Doc ID 15818 Rev 5111/147

Electrical characteristicsSTM32F205xx, STM32F207xx112/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xx

Table 70.

Symboltw(CLK)td(CLKL-NExL)td(CLKH-NExH)td(CLKL-NADVL)td(CLKL-NADVH)td(CLKL-AV)td(CLKH-AIV)td(CLKL-NWEL)td(CLKH-NWEH)td(CLKL-ADV)td(CLKL-ADIV)td(CLKL-Data)tsu(NWAITV-CLKH)th(CLKH-NWAITV)td(CLKL-NBLH)

1.CL = 15 pF.

2.Based on characterization, not tested in production.

Electrical characteristics

Synchronous multiplexed PSRAM write timings(1)(2)

Parameter

FSMC_CLK period

FSMC_CLK low to FSMC_Nex low (x = 0...2)FSMC_CLK high to FSMC_NEx high (x = 0...2)FSMC_CLK low to FSMC_NADV lowFSMC_CLK low to FSMC_NADV high

FSMC_CLK low to FSMC_Ax valid (x = 16...25)FSMC_CLK high to FSMC_Ax invalid (x = 16...25)FSMC_CLK low to FSMC_NWE lowFSMC_CLK high to FSMC_NWE highFSMC_CLK low to FSMC_AD[15:0] validFSMC_CLK low to FSMC_AD[15:0] invalidFSMC_A/D[15:0] valid after FSMC_CLK lowFSMC_NWAIT valid before FSMC_CLK highFSMC_NWAIT valid after FSMC_CLK highFSMC_CLK low to FSMC_NBL high

7213

6

THCLK +1

12

TCK + 2

1

5

THCLK + 2

4

Min27.7

2Max

Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns

Doc ID 15818 Rev 5113/147

Electrical characteristicsSTM32F205xx, STM32F207xx

Table 71.

Symboltw(CLK)td(CLKL-NExL)td(CLKH-NExH)td(CLKL-NADVL)

Synchronous non-multiplexed NOR/PSRAM read timings(1)(2)

Parameter

FSMC_CLK period

FSMC_CLK low to FSMC_NEx low (x = 0...2)FSMC_CLK high to FSMC_NEx high (x = 0...2)FSMC_CLK low to FSMC_NADV lowFSMC_CLK low to FSMC_NADV highFSMC_CLK low to FSMC_Ax valid (x = 0...25)

FSMC_CLK high to FSMC_Ax invalid (x = 0...25)THCLK + 4FSMC_CLK low to FSMC_NOE lowFSMC_CLK high to FSMC_NOE high

THCLK + 1.57725

THCLK + 2

4

Min27.7

1.5

Max

Unit ns ns ns ns ns ns ns

THCLK + 1.5 ns

ns ns ns ns ns

td(CLKL-NADVH)td(CLKL-AV)td(CLKH-AIV)td(CLKL-NOEL)td(CLKH-NOEH)tsu(DV-CLKH)th(CLKH-DV)th(CLKH-NWAITV)

1.CL = 15 pF.

FSMC_D[15:0] valid data before FSMC_CLK high6.5FSMC_D[15:0] valid data after FSMC_CLK high

tsu(NWAITV-CLKH)FSMC_NWAIT valid before FSMC_SMCLK high

FSMC_NWAIT valid after FSMC_CLK high

2.Based on characterization, not tested in production.

114/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxElectrical characteristics

Table 72.

Symboltw(CLK)td(CLKL-NExL)td(CLKH-NExH)

Synchronous non-multiplexed PSRAM write timings(1)(2)

Parameter

FSMC_CLK period

FSMC_CLK low to FSMC_NEx low (x = 0...2) FSMC_CLK high to FSMC_NEx high (x = 0...2) FSMC_CLK low to FSMC_NADV low FSMC_CLK low to FSMC_NADV high

FSMC_CLK low to FSMC_Ax valid (x = 16...25) FSMC_CLK high to FSMC_Ax invalid (x = 16...25) FSMC_CLK low to FSMC_NWE low FSMC_CLK high to FSMC_NWE high

FSMC_D[15:0] valid data after FSMC_CLK low

721THCLK + 1

6

TCK + 2

1

5

THCLK + 2

4

Min27.7

2Max

Unit ns ns ns ns ns ns ns ns ns ns ns ns ns

td(CLKL-NADVL)td(CLKL-NADVH)td(CLKL-AV)td(CLKH-AIV)td(CLKL-NWEL)td(CLKH-NWEH)td(CLKL-Data)th(CLKH-NWAITV)td(CLKL-NBLH)

1.CL = 15 pF.

tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high

FSMC_NWAIT valid after FSMC_CLK high FSMC_CLK low to FSMC_NBL high

2.Based on characterization, not tested in production.

Doc ID 15818 Rev 5115/147

Electrical characteristicsSTM32F205xx, STM32F207xxPC Card/CompactFlash controller waveforms and timings

Figure53 through Figure58 represent synchronous waveforms and Table73 provides the

corresponding timings. The results shown in this table are obtained with the following FSMC

configuration:

●COM.FSMC_SetupTime = 0x04;COM.FSMC_WaitSetupTime = 0x07;COM.FSMC_HoldSetupTime = 0x04;COM.FSMC_HiZSetupTime = 0x00;ATT.FSMC_SetupTime = 0x04;ATT.FSMC_WaitSetupTime = 0x07;ATT.FSMC_HoldSetupTime = 0x04;ATT.FSMC_HiZSetupTime = 0x00;IO.FSMC_SetupTime = 0x04;IO.FSMC_WaitSetupTime = 0x07;IO.FSMC_HoldSetupTime = 0x04;IO.FSMC_HiZSetupTime = 0x00;TCLRSetupTime = 0;TARSetupTime = 0;

Figure 53.PC Card/CompactFlash controller waveforms for common memory read

1.FSMC_NCE4_2 remains high (inactive during 8-bit access.

116/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxElectrical characteristics

Figure 54.PC Card/CompactFlash controller waveforms for common memory write

Doc ID 15818 Rev 5117/147

Electrical characteristicsSTM32F205xx, STM32F207xxFigure 55.PC Card/CompactFlash controller waveforms for attribute memory read

1.Only data bits 0...7 are read (bits 8...15 are disregarded).

118/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxElectrical characteristics

Figure 56.PC Card/CompactFlash controller waveforms for attribute memory write

1.Only data bits 0...7 are driven (bits 8...15 remains Hi-Z).

Doc ID 15818 Rev 5119/147

Electrical characteristicsSTM32F205xx, STM32F207xx

Table 73.

Symboltv(NCEx-A) tv(NCE4_1-A)th(NCEx-AI) th(NCE4_1-AI)

Switching characteristics for PC Card/CF read and write cycles(1)(2)

Parameter

FSMC_NCEx low (x = 4_1/4_2) to FSMC_Ay valid (y = 0...10) FSMC_NCE4_1 low (x = 4_1/4_2) to FSMC_Ay valid (y = 0...10)

FSMC_NCEx high (x = 4_1/4_2) to FSMC_Ax invalid (x = 0...10) FSMC_NCE4_1 high (x = 4_1/4_2) to FSMC_Ax invalid (x = 0...10)

FSMC_NCEx low to FSMC_NREG valid FSMC_NCE4_1 low to FSMC_NREG valid

2.5

MinMaxUnit

0ns

ns

td(NREG-NCEx) td(NREG-NCE4_1)th(NCEx-NREG) th(NCE4_1-NREG)td(NCE4_1-NOE)tw(NOE)td(NOE-NCE4_1tsu(D-NOE)th(NOE-D)tw(NWE)td(NWE-NCE4_1)td(NCE4_1-NWE)tv(NWE-D)th(NWE-D)td(D-NWE)

5ns

ns

5THCLK + 2

8THCLK –1.58THCLK + 15THCLK + 225158THCLK – 15THCLK + 2

8THCLK + 2

ns ns ns ns ns ns ns

5THCLK + 1.5 ns0

11THCLK13THCLK

ns ns ns

FSMC_NCEx high to FSMC_NREG invalid FSMC_NCE4_1

THCLK + 3

high to FSMC_NREG invalid

FSMC_NCE4_1 low to FSMC_NOE lowFSMC_NOE low width

FSMC_NOE high to FSMC_NCE4_1 highFSMC_D[15:0] valid data before FSMC_NOE highFSMC_D[15:0] valid data after FSMC_NOE highFSMC_NWE low width

FSMC_NWE high to FSMC_NCE4_1 highFSMC_NCE4_1 low to FSMC_NWE lowFSMC_NWE low to FSMC_D[15:0] validFSMC_NWE high to FSMC_D[15:0] invalidFSMC_D[15:0] valid before FSMC_NWE high

120/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxTable 73.

Symboltw(NIOWR)tv(NIOWR-D)th(NIOWR-D)

Electrical characteristics

Switching characteristics for PC Card/CF read and write cycles(1)(2) (continued)

Parameter

FSMC_NIOWR low width

FSMC_NIOWR low to FSMC_D[15:0] validFSMC_NIOWR high to FSMC_D[15:0] invalid

11THCLK

5THCLK+3ns

5THCLK – 5

Min8THCLK + 3

5THCLK +1

Max

Unit ns ns ns ns ns

5THCLK + 2.5 ns

5THCLK – 54.59

8THCLK + 2

ns ns ns ns

td(NCE4_1-NIOWR)FSMC_NCE4_1 low to FSMC_NIOWR validth(NCEx-NIOWR) FSMC_NCEx high to FSMC_NIOWR invalid th(NCE4_1-NIOWR)FSMC_NCE4_1 high to FSMC_NIOWR invalid

td(NIORD-NCEx) FSMC_NCEx low to FSMC_NIORD valid FSMC_NCE4_1 td(NIORD-NCE4_1)low to FSMC_NIORD valid

th(NCEx-NIORD) FSMC_NCEx high to FSMC_NIORD invalid th(NCE4_1-NIORD)FSMC_NCE4_1 high to FSMC_NIORD invalidtsu(D-NIORD)td(NIORD-D)tw(NIORD)

1.CL = 15 pF.

2.Based on characterization, not tested in production.

FSMC_D[15:0] valid before FSMC_NIORD highFSMC_D[15:0] valid after FSMC_NIORD highFSMC_NIORD low width

NAND controller waveforms and timings

Figure59 through Figure62 represent synchronous waveforms and Table74 provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

●●●●●●●●●●●●●●

COM.FSMC_SetupTime = 0x01;COM.FSMC_WaitSetupTime = 0x03;COM.FSMC_HoldSetupTime = 0x02;COM.FSMC_HiZSetupTime = 0x01;ATT.FSMC_SetupTime = 0x01;ATT.FSMC_WaitSetupTime = 0x03;ATT.FSMC_HoldSetupTime = 0x02;ATT.FSMC_HiZSetupTime = 0x01;Bank = FSMC_Bank_NAND;

MemoryDataWidth = FSMC_MemoryDataWidth_16b;ECC = FSMC_ECC_Enable;

ECCPageSize = FSMC_ECCPageSize_512Bytes;TCLRSetupTime = 0;TARSetupTime = 0;

Doc ID 15818 Rev 5121/147

Electrical characteristics

STM32F205xx, STM32F207xx

122/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxElectrical characteristics

Table 74.

Symboltd(D-NWE)(2)tw(NOE)(2)tsu(D-NOE)(2)th(NOE-D)(2)tw(NWE)(2)tv(NWE-D)(2)th(NWE-D)(2)

Switching characteristics for NAND Flash read and write cycles(1)

Parameter

FSMC_D[15:0] valid before FSMC_NWE highFSMC_NOE low width

FSMC_D[15:0] valid data before FSMC_NOE high

Min6THCLK + 12

Max

Unit ns

4THCLK – 1.54THCLK + 1.5 ns25

ns ns

4THCLK + 2.5 ns0

10THCLK + 4

ns ns

3THCLK + 1.5 ns

3THCLK + 4.5

3THCLK + 2

3THCLK + 4.5

ns ns ns

FSMC_D[15:0] valid data after FSMC_NOE high7FSMC_NWE low width

FSMC_NWE low to FSMC_D[15:0] validFSMC_NWE high to FSMC_D[15:0] invalid

4THCLK – 1

td(ALE-NWE)(3)FSMC_ALE valid before FSMC_NWE lowth(NWE-ALE)(3)FSMC_NWE high to FSMC_ALE invalidtd(ALE-NOE)(3)FSMC_ALE valid before FSMC_NOE lowth(NOE-ALE)(3)FSMC_NWE high to FSMC_ALE invalid

1.CL = 15 pF.

2.Based on characterization, not tested in production.3.Guaranteed by design, not tested in production.

5.3.24 Camera interface (DCMI) timing specifications

Table 75.

Symbol

DCMI characteristics

Parameter

Frequency ratio

DCMI_PIXCLK/fHCLK

ConditionsDCMI_PIXCLK= 48MHz

Min

Max2.5

Unit

Doc ID 15818 Rev 5123/147

Electrical characteristicsSTM32F205xx, STM32F207xx

5.3.25 SD/SDIO MMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in Table76 are derived from tests

performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table10.

Refer to Section5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (D[7:0], CMD, CK).

Table 76.

SymbolfPP-

SD / MMC characteristics

Parameter

Clock frequency in data transfer mode

SDIO_CK/fPCLK2 frequency ratio

ConditionsCL ≤ 30 pF-Min0-Max488/3

UnitMHz-

124/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xx

Table 76.

SymboltW(CKL)tW(CKH)

trtf

Electrical characteristics

SD / MMC characteristics (continued)

Parameter

Clock low time, fPP = 16MHzClock high time, fPP = 16MHzClock rise timeClock fall time

ConditionsCL ≤ 30 pFCL ≤ 30 pFCL ≤ 30 pFCL ≤ 30 pF

Min3231

3.55

ns

Max

Unit

CMD, D inputs (referenced to CK)

tISUtIH

Input setup timeInput hold time

CL ≤ 30 pFCL ≤ 30 pF

20

ns

CMD, D outputs (referenced to CK) in MMC and SD HS mode

tOVtOH

Output valid timeOutput hold time

CL ≤ 30 pFCL ≤ 30 pF

0.3

6

ns

CMD, D outputs (referenced to CK) in SD default mode(1)

tOVDtOHD

Output valid default timeOutput hold default time

CL ≤ 30 pFCL ≤ 30 pF

0.5

7

ns

1.Refer to SDIO_CLKCR, the SDI clock control register to control the CK output.

5.3.26 RTC characteristics

Table 77.

Symbol

-

RTC characteristics

Parameter

fPCLK1/RTCCLK frequency

ratio

ConditionsAny read/write

operation from/to an RTC register

Min4

Max-Unit-

Doc ID 15818 Rev 5125/147

Package characteristicsSTM32F205xx, STM32F207xx6 Package characteristics

6.1 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of

ECOPACK? packages, depending on their level of environmental compliance. ECOPACK?

specifications, grade definitions and product status are available at: www.st.com.

ECOPACK? is an ST trademark.

126/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xx

Package characteristics

Figure 66.Recommended footprint(1)(2)

Figure 65.LQFP64 – 10 x 10 mm 64 pin low-profile

(1)

1.Drawing is not to scale.2.Dimensions are in millimeters.

Table 78.

Symbol

LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data

millimeters

Min

Typ

Max

Min

inches(1)

Typ

Max0.0630

0.00200.05310.00670.0035

0.47240.39370.47240.39370.0197

7°0.750

0°0.0177

3.5°0.02360.0394

7°0.0295

0.05510.0087

0.00590.05710.01060.0079

AA1A2bc

1

EE1eθLL1N

1.6000.0501.3500.1700.090

1.4000.220

0.1501.4500.270

0.500

0°0.450

3.5°0.600

Number of pins

64

1.Values in inches are converted from mm and rounded to 4 decimal digits.

Doc ID 15818 Rev 5127/147

Package characteristicsSTM32F205xx, STM32F207xx

1.Drawing is not to scale.

Table 79.WLCSP64+2 - 0.400 mm pitch wafer level chip size package mechanical data

millimeters

inches

Max0.6200.2100.4100.3003.6944.026

Typ0.02240.00750.01500.01060.14460.1577

Min0.02050.00670.01380.00940.14390.1569

0.0020

Max0.02440.00830.01610.01180.14540.1585

Symbol

Typ

AA1A2bDEee1FGeee

0.5700.1900.3800.2703.6744.0060.4003.2000.2370.403

Min0.5200.1700.3500.2403.6543.986

0.01570.12600.00930.01590.050

128/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xx

Package characteristics

Figure 69.Recommended footprint(1)(2)

Figure 68.LQFP100, 14 x 14 mm 100-pin low-profile

(1)

1.Drawing is not to scale.2.Dimensions are in millimeters.

Table 80.

Symbol

LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data

millimeters

Min

Typ

Max1.600

0.0501.3500.1700.09015.80013.80015.80v13.800

16.00014.00012.00016.00014.00012.0000.500

0.4500°

0.6001.0003.5°0.080

0.750

0.0177

16.20014.200

0.62200.5433

1.4000.220

0.1501.4500.2700.20016.20014.200

0.00200.05310.00670.00350.62200.5433

0.62990.55120.47240.62990.55120.47240.01970.02360.03943.5°0.0031

7°0.02950.63780.5591

0.05510.0087

Min

inches(1)

Typ

Max0.06300.00590.05710.01060.00790.63780.5591

AA1A2bcDD1D3EE1E3eLL1kccc

1.Values in inches are converted from mm and rounded to 4 decimal digits.

Doc ID 15818 Rev 5129/147

Package characteristics

STM32F205xx, STM32F207xxFigure 71.Recommended

(1)(2)

Figure 70.LQFP144, 20 x 20 mm, 144-pin low-profile quad

(1)

1.Drawing is not to scale.2.Dimensions are in millimeters.

Table 81.

Symbol

LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data

millimeters

Min

Typ

Max1.600

0.0501.3500.1700.09021.80019.80021.80019.800

22.00020.00017.50022.00020.00017.5000.500

0.4500°

0.6001.0003.5°0.080

0.750

0.0177

22.20020.200

0.85830.7795

1.4000.220

0.1501.4500.2700.20022.20020.200

0.00200.05310.00670.00350.85830.7795

0.86610.78740.6890.86610.78740.68900.01970.02360.03943.5°0.0031

7°0.02950.87400.7953

0.05510.0087

Min

inches(1)

Typ

Max0.06300.00590.05710.01060.00790.8740.7953

AA1A2bcDD1D3EE1E3eLL1kccc

1.Values in inches are converted from mm and rounded to 4 decimal digits.

130/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxPackage characteristics

1.Drawing is not to scale.

Table 82.

Symbol

LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm package mechanical data

millimeters

Min

Typ

Max1.600

0.0501.3500.1700.09023.90023.900

0.500

25.90025.9000.450

1.0001.2501.250

0.080

0.0031

26.10026.1000.750

1.01971.01970.0177

0.03940.04920.0492

0.1501.4500.2700.20024.10024.100

0.00200.05310.00670.00350.94090.9409

0.0197

1.02761.02760.0295

Min

inches(1)

Typ

Max0.06300.00590.05710.01060.00790.94880.9488

AA1A2bcDEeHDHEL(2)L1ZDZEkccc

1.Values in inches are converted from mm and rounded to 4 decimal digits.2.L dimension is measured at gauge plane at 0.25 mm above the seating plane.

Doc ID 15818 Rev 5131/147

Package characteristicsSTM32F205xx, STM32F207xx

1.Drawing is not to scale.

Table 83.

Symbol

UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data

millimeters

Min

Typ0.5300.0800.4500.130

0.2700.3009.9509.9500.6000.400

0.3200.35010.00010.0000.6500.4500.1200.1500.080

0.3700.40010.05010.0500.7000.500

0.01060.01180.37400.37400.02360.0157

Max0.6100.1100.500

Min0.01810.0020.0157

inches(1)

Typ0.02090.00310.01770.00510.01260.01380.39370.39370.02560.01770.00470.00590.0031

0.01460.01570.39570.39570.02760.0197Max0.02400.00430.0197

AA1A2A3A4bDEeFdddeeefff

0.4600.0500.400

1.Values in inches are converted from mm and rounded to 4 decimal digits.

132/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxPackage characteristics

6.2 Thermal characteristics

The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated

using the following equation:

TJ max = TA max + (PD max x ΘJA)

Where:

●TA max is the maximum ambient temperature in °C,ΘJA is the package junction-to-ambient thermal resistance, in °C/W,PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip

internal power.

PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),PI/O max represents the maximum power dissipation on output pins where:

taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the

application.

Table 84.

Symbol Package thermal characteristicsParameter

Thermal resistance junction-ambient

LQFP 64 - 10 × 10 mm / 0.5 mm pitch

Thermal resistance junction-ambient

WLCSP64+2 - 0.400 mm pitch

Thermal resistance junction-ambient

LQFP 100 - 14 × 14 mm / 0.5 mm pitch

Thermal resistance junction-ambient

LQFP 144 - 20 × 20 mm / 0.5 mm pitch

Thermal resistance junction-ambient

LQFP 176 - 24 × 24 mm / 0.5 mm pitch

Thermal resistance junction-ambient

UFBGA176 - 10× 10 mm / 0.5 mm pitchValue455146°C/W40UnitΘJA3839

Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural

Convection (Still Air). Available from www.61k.comDoc ID 15818 Rev 5133/147

Part numberingSTM32F205xx, STM32F207xx7 Part numbering

Table 85.

Example:

Device family

Product type

Device subfamily

207= STM32F20x, connectivity, USB OTG FS/HS, camera

interface,, Ethernet

Pin count

V = 100 pins

Z = 144 pins

I = 176 pins(2)

Flash memory size

C = 256 Kbytes of Flash memory

E = 512 Kbytes of Flash memory

F = 768 Kbytes of Flash memory

G = 1024 Kbytes of Flash memory

Package

T = LQFP

H = UFBGA

Y = WLCSP

Temperature range

7 = Industrial temperature range, –40 to 105 °C.

Options

TR = tape and reel

1.The 66 pins is available on WLCSP package only.

2.The LQFP176 package is not in production. It is available only for development. Ordering information schemeSTM32F205RET6xxxFor a list of available options (speed, package, etc.) or for further information on any aspect

of this device, please contact your nearest ST sales office.

134/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxApplication block diagrams

Appendix A

A.1

Table 86.

Application block diagrams

Main applications versus package

Table86 gives examples of configurations for each package.

Main applications versus package for STM32F207xx microcontrollers(1)

64 pins100 pins144 pins176 pins

Config Config Config Config ConfigConfigConfig ConfigConfig ConfigConfigConfigConfig1231234123412

OTG

FSFSHS ULPI

USB 2

OTGFSFS

EthernetSPI/I2S2SPI/I2S3SDIO

SDIO8bits Data10bits Data12bits Data14bits DataNOR/RAM Muxed

FSMC

NOR/RAMNANDCF

CAN

--MIIRMII

XX------XX-----X

XX--------------XXXXX---X-XX

XXXX

XXXXXXXX-XX

XXXXXXX

SDIOor DCMI

XX-XX--X-XXXXX

XXXX

XXXX

XXXXXXXXX

XX

X

XXXXXXXXXXXXX

XXXXXXXXXXX

USB 1

SDIO or DCMISDIO or DCMISDIO or DCMISDIO or DCMISDIO or DCMISDIO or DCMI

DCMI

---XXXXXXXXXX

----

---X

---X

X--X-X

X*2219-X

-X

XXX-

XX*19X-

XX*22XX

XX*19XX

XX*22X-

XX*22XX

1.X*y: FSMC address limited to “y”.

Doc ID 15818 Rev 5135/147

Application block diagramsSTM32F205xx, STM32F207xx

A.2 Application example with regulator off

1.This mode is available only on UFBGA176 and WLCSP64+2 packages.

1.This mode is available only on WLCSP64+2 package.

136/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxApplication block diagrams

A.3 USB OTG full speed (FS) interface solutions

1.STMPS2141STR/STULPI01B needed only if the application has to support a VBUS powered device. A

basic power switch can be used if 5 V are available on the application board.

Doc ID 15818 Rev 5137/147

Application block diagramsSTM32F205xx, STM32F207xx

1.External voltage regulator only needed when building a VBUS powered device.

2.STMPS2141STR/STULPI01B needed only if the application has to support a VBUS powered device. A

basic power switch can be used if 5V are available on the application board.3.The same application can be developped using the OTG HS in FS mode to achieve enhanced

performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

A.4 USB OTG high speed (HS) interface solutions

138/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xx

Application block diagrams

1.STMPS2141STR/STULPI01B needed only if the application has to support a VBUS powered device. A

basic power switch can be used if 5 V are available on the application board.

1.It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F20x

with a 24 or 26MHz crystal when using USB HS. The above figure only shows an example of a possible connection.

Doc ID 15818 Rev 5139/147

Application block diagramsSTM32F205xx, STM32F207xx

A.5 Complete audio player solutions

Two solutions are offered, illustrated in Figure82 and Figure83.

Figure82 shows storage media to audio DAC/amplifier streaming using a software Codec. This solution implements an audio crystal to provide audio class I2S accuracy on the master clock (0.5% error maximum, see the Serial peripheral interface section in the reference manual for details).

Figure83 shows storage media to audio Codec/amplifier streaming with SOF synchronization of input/output audio streaming using a hardware Codec.

140/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxApplication block diagrams

Doc ID 15818 Rev 5141/147

Application block diagramsSTM32F205xx, STM32F207xx1.I2S_SCK is the I2S serial clock to the external audio DAC (not to be confused with I2S_CK).

1.I2S_SCK is the I2S serial clock to the external audio DAC (not to be confused with I2S_CK).

142/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxRevision historyRevision history

Table 87.

Date

05-Jun-2009 Document revision historyRevision1Initial release.

Document status promoted from Target specification to Preliminary

data.

In Table5: STM32F20x pin and ball definitions:

–Note4 updated

–VDD_SA and VDD_3 pins inverted (Figure11: STM32F20x LQFP100

pinout, Figure12: STM32F20x LQFP144 pinout and Figure13:

STM32F20x LQFP176 pinout corrected accordingly).

Section6.1: Package mechanical data changed to LQFP with no

exposed pad.

LFBGA144 package removed. STM32F203xx part numbers removed.

Part numbers with 128 and 256 Kbyte Flash densities added.

Encryption features removed.

PC13-TAMPER-RTC renamed to PC13-RTC_AF1 and PI8-TAMPER-

RTC renamed to PI8-RTC_AF2.Changes09-Oct-2009201-Feb-20103

Doc ID 15818 Rev 5143/147

Revision historyTable 87.

DateSTM32F205xx, STM32F207xxDocument revision history (continued)RevisionChanges

Renamed high-speed SRAM, system SRAM.

Removed combination: 128KBytes Flash memory in LQFP144.Added UFBGA176 package. Added note 1 related to LQFP176 package in Table2, Figure13, and Table85.

Added information on ART accelerator and audio PLL (PLLI2S).Added Table4: USART feature comparison.

Several updates on Table5: STM32F20x pin and ball definitions and Table6: Alternate function mapping. ADC, DAC, oscillator, RTC_AF, WKUP and VBUS signals removed from alternate functions and

moved to the “other functions” column in Table5: STM32F20x pin and ball definitions.

TRACESWO added in Figure4: STM32F20x block diagram, Table5: STM32F20x pin and ball definitions, and Table6: Alternate function mapping.

XTAL oscillator frequency updated on cover page, in Figure4: STM32F20x block diagram and in Section2.2.12: External interrupt/event controller (EXTI).

Updated list of peripherals used for boot mode in Section2.2.14: Boot modes.

Added Regulator bypass mode in Section2.2.17: Voltage regulator, and Section5.3.3: Operating conditions at power-up / power-down in regulator bypass mode.

Updated Section2.2.18: Real-time clock (RTC), backup SRAM and backup registers.

Added NoteNote: in Section2.2.19: Low-power modes.

Added SPI TI protocol in Section2.2.28: Serial peripheral interface (SPI).

Added USB OTG_FS features in Section2.2.33: Universal serial bus on-the-go full-speed (OTG_FS).

Updated VCAP_1 and VCAP_2 capacitor value to 2.2μF in Figure18: Power supply scheme.

Removed DAC, modified ADC limitations, and updated I/O

compensation for 1.8 to 2.1V range in Table11: Limitations depending on the operating power supply range.

Added VBORL, VBORM, VBORH and IRUSH in Table14: Embedded reset and power control block characteristics.

Removed table Typical current consumption in Sleep mode with Flash memory in Deep power down mode. Merged typical and maximum current consumption sections and added Table15: Typical and maximum current consumption in Run mode, code with data processing running from Flash, Table16: Typical and maximum

current consumption in Run mode, code with data processing running from RAM, Table17: Typical and maximum current consumption in Sleep mode, Table18: Typical and maximum current consumptions in Stop mode, Table19: Typical and maximum current consumptions in Standby mode, and Table20: Typical and maximum current consumptions in VBAT mode.

Update Table29: Main PLL characteristics and added Section5.3.10: PLL spread spectrum clock generation (SSCG) characteristics.13-Jul-20104

144/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xxTable 87.

DateRevision historyDocument revision history (continued)RevisionChanges13-Jul-2010Added Note6 for CIO in Table40: I/O static characteristics.Updated Section5.3.16: TIM timer characteristics.Added TNRST_OUT in Table43: NRST pin characteristics.Updated Table46: I2C characteristics.Removed 8-bit data in and data out waveforms from Figure36: ULPI timing diagram.Removed note related to ADC calibration in Table60. Section5.3.18: 12-bit ADC characteristics: ADC characteristics tables merged into one single table; tables ADC conversion time and ADC accuracy removed.Updated Table61: DAC characteristics.Updated Section5.3.20: Temperature sensor characteristics and Section5.3.21: VBAT monitoring characteristics.Update Section5.3.24: Camera interface (DCMI) timing specifications.4

(continued)Added Section5.3.25: SD/SDIO MMC card host interface (SDIO)

characteristics, and Section5.3.26: RTC characteristics.

Added Section6.2: Thermal characteristics. Updated Table82:

LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm package mechanical data and Figure72: LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm, package outline.

Changed tape and reel code to TX in Table85: Ordering information scheme.

Added Table86: Main applications versus package for STM32F207xx microcontrollers. Updated figures in Appendix A.3: USB OTG full speed (FS) interface solutions and A.4: USB OTG high speed (HS) interface solutions. Updated Figure84: Audio player solution using PLL, PLLI2S, USB and 1 crystal and Figure85: Audio PLL (PLLI2S) providing accurate I2S clock.

Doc ID 15818 Rev 5145/147

Revision historyTable 87.

DateSTM32F205xx, STM32F207xxDocument revision history (continued)RevisionChanges

Update I/Os in Section: Features.

Added WLCSP66(64+2) package. Added note 1 related to LQFP176 on cover page.

Added trademark for ART accelerator. Updated Section2.2.3: Adaptive real-time memory accelerator (ART Accelerator?).Updated Figure5: Multi-AHB matrix.

Added case of BOR inactivation using IRROFF on WLCSP devices in Section2.2.16: Power supply supervisor.

Reworked Section2.2.17: Voltage regulator to clarify regulator off modes. Renamed PDROFF, IRROFF in the whole document.Added Section2.2.20: VBAT operation.

Updated LIN and IrDA features for UART4/5 in Table4: USART feature comparison.

Table5: STM32F20x pin and ball definitions: Modified VDD_3 pin, and added note related to the FSMC_NL pin; renamed BYPASS-REG REGOFF, and add IRROFF pin; renamed USART4/5 UART4/5. USART4 pins renamed UART4.

Changed VSS_SA to VSS, and VDD_SA pin reserved for future use. Updated maximum HSE crystal frequency to 26MHz.

Section5.2: Absolute maximum ratings: Updated VIN minimum and maximum values and note for non-five-volt tolerant pins in Table7: Voltage characteristics. Updated IINJ(PIN) maximum values and related notes in Table8: Current characteristics.

Updated VDDA minimum value in Table10: General operating conditions.

Added Note2 Updated Maximum CPU frequency in Table11: Limitations depending on the operating power supply range, and added Figure20: Number of wait states versus fCPU and VDD range.Added brownout level 1, 2, and 3 thresholds in Table14: Embedded reset and power control block characteristics.

Changed fOSC_IN maximum value in Table24: HSE 4-26 MHz oscillator characteristics.

Changed fPLL_IN maximum value in Table29: Main PLL characteristics, and updated jitter parameters in Table30: PLLI2S (audio PLL) characteristics.

Section5.3.14: I/O port characteristics: updated VIH and VIL in Table40: I/O static characteristics.

Added Note1 below Table41: Output voltage characteristics.Updated RPD and RPU parameter description in Table51: USB OTG FS DC electrical characteristics.

Updated VREF+ minimum value in Table59: ADC characteristics.Updated Table64: Embedded internal reference voltage.

Removed Ethernet and USB2 for 64-pin devices in Table86: Main applications versus package for STM32F207xx microcontrollers.

Added A.2: Application example with regulator off, removed “OTG FS connection with external PHY” figure, updated Figure77, Figure78, and Figure80 to add STULPI01B.25-Nov-20105

146/147Doc ID 15818 Rev 5

STM32F205xx, STM32F207xx

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve theright to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at anytime, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes noliability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of thisdocument refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party productsor services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of suchthird party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIEDWARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIEDWARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWSOF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOTRECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAININGAPPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVEGRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately voidany warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, anyliability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

? 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 15818 Rev 5147/147

四 : STM32中文参考手册

STM32F10xxx参考手册

翻译说明

本文档是依据STM32 Reference Manual (RM0008)翻译的,已经与2009年6月的英文第9版(Doc ID 13902 Rev 9)进行了全面校对,更正了不少以前版本的错误。[www.61k.com)

在校对即将结束时,ST于2009年12月中旬又发布了英文第10版(Doc ID 13902 Rev 10),为了与最新的英文版同步,我们按照英文第10版结尾的”文档版本历史”中的指示,在翻译的文档中快速地校对更正了对应的部分。由于时间的关系,没有逐字逐句地按照英文第10版进行通篇校对,鉴于芯片本身没有改变,我们相信除了”文档版本历史”中指出的差别外,英文第10版与英文第9版不会再有更多的变化,遂定稿现在这个翻译版本为对应的中文第10版文档。

由于我们的水平有限以及文档篇幅的庞大,翻译的过程中难免会有错误和遗漏的地方,希望广大读者们能够及时向我们反馈您在阅读期间所发现的错误和问题,我们会尽快在下一个版本中更正。您可以发邮件到mcu.china@st.com向我们提出您的意见和建议,谢谢。

意法半导体(中国)投资有限公司

MCU技术支持

2010年1月10日

stm32 STM32中文参考手册

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。请读者随时注意在ST网站下载更新版本

stm32 STM32中文参考手册

STM32F10xxx参考手册

文档使用说明

本手册是STM32微控制器产品的技术参考手册,技术参考手册是有关如何使用该产品的具体信息,包含各个功能模块的内部结构、所有可能的功能描述、各种工作模式的使用和寄存器配置等详细信息。[www.61k.com] 技术参考手册不包含有关产品技术特征的说明,这些内容在数据手册中。数据手册中的内容包括:产品的基本配置(如内置Flash和RAM的容量、外设模块的种类和数量等),管脚的数量和分配,电气特性,封装信息,和定购代码等。

STM32是一个微控制器产品系列的总称,目前这个系列中已经包含了多个子系列,分别是:STM32小容量产品、STM32中容量产品、STM32大容量产品和STM32互联型产品;按照功能上的划分,又可分为STM32F101xx、STM32F102xx和STM32F103xx系列;因此STM32产品系列有以下这些数据手册: 小容量STM32F101xx:http://www.st.com/stonline/products/literature/ds/15058.pdf

中容量STM32F101xx:http://www.st.com/stonline/products/literature/ds/13586.pdf

大容量STM32F101xx:http://www.st.com/stonline/products/literature/ds/14610.pdf

小容量STM32F102xx:http://www.st.com/stonline/products/literature/ds/15057.pdf

中容量STM32F102xx:http://www.st.com/stonline/products/literature/ds/15056.pdf

小容量STM32F103xx:http://www.st.com/stonline/products/literature/ds/15060.pdf

中容量STM32F103xx:http://www.st.com/stonline/products/literature/ds/13587.pdf

大容量STM32F103xx:http://www.st.com/stonline/products/literature/ds/14611.pdf

互联型STM32F105xx/STM32F107xx:http://www.st.com/stonline/products/literature/ds/15274.pdf

STM32微控制器产品中大多数功能模块都是在多个产品(或所有产品)中共有的并且是相同的,因此只有一份STM32微控制器产品的技术参考手册对应所有这些产品。技术参考手册对每种功能模块都有专门的一个章节对应,每章的开始申明了这个功能模块的适用范围;例如第5章”备份寄存器”适用于整个STM32微控制器系列,第27章”以太网”只适用于STM32F107xx互联型产品。 为了方便阅读,下一页的表格列出了每个产品子系列所对应功能模块在技术参考手册中的章节一览。

通常在芯片选型的初期,首先要看数据手册以评估该产品是否能够满足设计上的功能需求;在基本选定所需产品后,需要察看技术参考手册以确定各功能模块的工作模式是否符合要求;在确定选型进入编程设计阶段时,需要详细阅读技术参考手册获知各项功能的具体实现方式和寄存器的配置使用。 在设计硬件时还需参考数据手册以获得电压、电流、管脚分配、驱动能力等信息。

关于Cortex-M3核心、SysTick定时器和NVIC的详细说明,请参考另一篇ST的文档和一篇ARM的文档:《STM32F10xxx Cortex-M3编程手册》和《Cortex?-M3技术参考手册》。

参照2009年12月 RM0008 Reference Manual 英文第10版

stm32 STM32中文参考手册

本译文仅供参考,如有翻译错误,请以英文原稿为准。请读者随时注意在ST网站下载更新版本

stm32 STM32中文参考手册

STM32F10xxx参考手册

STM32系列产品命名规则

stm32 STM32中文参考手册

stm32 STM32中文参考手册

TR = 卷带式包装

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。[www.61k.com]请读者随时注意在ST网站下载更新版本

stm32 STM32中文参考手册

STM32F10xxx参考手册

STM32

小容量STM32F101xx

小容量STM32F102xx

小容量STM32F103xx

中容量STM32F101xx

中容量STM32F102xx

中容量STM32F103xx

大容量STM32F101xx

大容量STM32F103xx

STM32F105xx

STM32F107xx

第1章:文中的缩写

●●●●●● ●●●● ● ●●● ●●● ●●

●●●●●● ●●●●● ●●●●●● ●●● ●●

●●●●●● ●●●● ● ●●● ● ●●● ●●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

扩展:stm32中文参考手册 pdf / stm32中文参考手册 v10 / stm32的datebase

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●●●●● ●●●●●●●●●●●●●●●●●● ●●

●●●●● ●●●●●●●●●●●● ●●●●● ●●

●●●●● ●●●●●●●●●●●● ●●●●●●●●

第2章:存储器和总线构架●

第3章:CRC计算单元(CRC)第4章:电源控制(PWR)

●●

第5章:备份寄存器(BKP)

第6章:小容量、中容量和大容量产品的复位和时钟控制(RCC)第7章:互联型产品的复位和时钟控制(RCC)第8章:通用和复用功能I/O(GPIO和AFIO)第9章:中断和事件

● ●●

第10章:DMA控制器(DMA)

第11章:模拟/数字转换(ADC)第12章:数字/模拟转换(DAC)

第13章:高级控制定时器(TIM1和TIM8)第14章:通用定时器(TIMx)

第15章:基本定时器(TIM6和TIM7)第16章:实时时钟(RTC)

第17章:独立看门狗(IWDG)

第18章:窗口看门狗(WWDG)●

第19章:灵活的静态存储器控制器(FSMC)第20章:SDIO接口(SDIO)

第21章:USB全速设备接口(USB)第22章:控制器局域网(bxCAN)第23章:串行外设接口(SPI)第24章:I2C接口

●●

第25章:通用同步异步收发器(USART)第26章:USB OTG全速(OTG_FS)

第27章:以太网(ETH):具有DMA控制器的介质访问控制(MAC)第28章:器件电子签名

第29章:调试支持(DBG)

● 表示所在行对应的章节适用于该列标示的产品系列

提示:点击上表中的章节名字可以直接跳转到对应的章节。[www.61k.com]

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。请读者随时注意在ST网站下载更新版本

stm32 STM32中文参考手册

stm32 STM32中文参考手册

STM32F10xxx参考手册

下表给出了一个交叉参考,在使用各功能模块时应重点阅读哪些章节:

功能模块

备份寄存器(BKP)

通用输入输出端口(GPIO)

通用串行总线(USB)

通用同步异步收发器(USART)

通用串行总线OTG(OTG_FS)

模拟/数字转换(ADC)

静态存储器控制器(FSMC)

独立看门狗(IWDG)

窗口看门狗WWDG)

控制器局域网(bxCAN)

数字/模拟转换(DAC)

定时器(TIMx(x=1…8))

串行外设总线(SPI)

以太网(ETH)

实时时钟(RTC)

芯片间总线接口(I2C)

SDIO接口(SDIO)

第1章:文中的缩写

●●●●●●●●●●● ● ● ● ●●●

第2章:存储器和总线构架●●●●●●●●●●● ● ● ● ●●●

第3章:CRC计算单元(CRC)第4章:电源控制(PWR)

●●●●●●●●●●● ● ● ● ●●●

第5章:备份寄存器(BKP)●◎

第6章:小容量、中容量和大容量产品的复位和时钟控制(RCC) 或

第7章:互联型产品的复位和时钟控制(RCC)第8章:通用和复用功能I/O(GPIO和AFIO)第9章:中断和事件

●●●●●●●●●●● ● ● ● ●●●◎●●●●◎●●●●● ● ● ● ●●●

◎◎◎◎◎

◎◎◎◎ ◎ ◎ ◎ ◎◎◎

◎◎

●●

◎ ◎ ◎ ●

第10章:DMA控制器(DMA)

◎◎◎

第11章:模拟/数字转换(ADC)第12章:数字/模拟转换(DAC)

第13章:高级控制定时器(TIM1和TIM8)第14章:通用定时器(TIMx)

◎◎

第15章:基本定时器(TIM6和TIM7)第16章:实时时钟(RTC)

◎◎●

第17章:独立看门狗(IWDG)

第18章:窗口看门狗(WWDG)

第19章:灵活的静态存储器控制器(FSMC)第20章:SDIO接口(SDIO)

第21章:USB全速设备接口(USB)第22章:控制器局域网(bxCAN)第23章:串行外设接口(SPI)第24章:I2C接口

第25章:通用同步异步收发器(USART)第26章:USB OTG全速(OTG_FS)

第27章:以太网(ETH):具有DMA控制器的介质访问控制(MAC)

第28章:器件电子签名

第29章:调试支持(DBG)

◎◎◎◎◎◎◎◎◎◎◎ ◎ ◎ ◎ ◎◎◎

● 表示对应的章节是必读的 ◎ 表示对应的章节是选读的

注:请区分第7章的内容只适合于互联型产品,第6章的内容适合于除互联型产品以外的产品。[www.61k.com]

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。请读者随时注意在ST网站下载更新版本

stm32 STM32中文参考手册

(

stm32 STM32中文参考手册

STM32F10xxx参考手册

stm32 STM32中文参考手册

参考手册

STM32F101xx, STM32F102xx、STM32F103xx、STM32F105xx

和STM32F107xx,ARM内核32位高性能微控制器

导言

本参考手册针对应用开发,提供关于如何使用STM32F101xx、STM32F102xx、STM32F103和STM32F105xx/STM32F107xx微控制器的存储器和外设的详细信息。[www.61k.com]在本参考手册中STM32F101xx、STM32F102xx、STM32F103和STM32F105xx/STM32F107xx被统称为STM32F10xxx。

STM32F10xxx系列拥有不同的存储器容量、封装和外设配置。

关于订货编号、电气和物理性能参数,请参考小容量、中容量和大容量的STM32F101xx和STM32F103xx的数据手册,小容量和中容量的STM32F102xx数据手册和STM32F105xx/ STM32F107xx互联型产品的数据手册。

关于芯片内部闪存的编程,擦除和保护操作,请参考。

关于ARM Cortex?-M3内核的具体信息,请参考Cortex?-M3技术参考手册。

扩展:stm32中文参考手册 pdf / stm32中文参考手册 v10 / stm32的datebase

相关文档

● Cortex?-M3技术参考手册,可按下述链接下载: 下述文档可在ST网站下载(http://www.st.com/mcu/):

● STM32F101xx、STM32F102xx和STM32F103xx的数据手册。

● STM32F10xxx闪存编程手册。 相关数据手册下载地址:

小容量STM32F101xx:http://www.st.com/stonline/products/literature/ds/15058.pdf

中容量STM32F101xx:http://www.st.com/stonline/products/literature/ds/13586.pdf

大容量STM32F101xx:http://www.st.com/stonline/products/literature/ds/14610.pdf

小容量STM32F102xx:http://www.st.com/stonline/products/literature/ds/15057.pdf

中容量STM32F102xx:http://www.st.com/stonline/products/literature/ds/15056.pdf

小容量STM32F103xx:http://www.st.com/stonline/products/literature/ds/15060.pdf

中容量STM32F103xx:http://www.st.com/stonline/products/literature/ds/13587.pdf

大容量STM32F103xx:http://www.st.com/stonline/products/literature/ds/14611.pdf

互联型STM32F105xx/STM32F107xx:http://www.st.com/stonline/products/literature/ds/15274.pdf

STM32F10xxx Cortex-M3编程手册:

参照2009年12月 RM0008 Reference Manual 英文第10版

stm32 STM32中文参考手册

本译文仅供参考,如有翻译错误,请以英文原稿为准。请读者随时注意在ST网站下载更新版本

stm32 STM32中文参考手册

目录 STM32F10xxx参考手册

目录

1 文中的缩写 24

1.1 1.2 1.3

寄存器描述表中使用的缩写列表 24 术语表 可用的外设 系统构架 存储器组织 存储器映像 2.3.1

2.3.2 2.3.3 2.4

24 24 25 27 28

2 存储器和总线构架 25

2.1 2.2 2.3

嵌入式SRAM 29 位段 29 嵌入式闪存 30

33 34 34 34 35

启动配置 CRC简介 CRC主要特性 CRC功能描述 CRC寄存器 3.4.1 3.4.2 3.4.3 3.4.4

3 CRC计算单元(CRC) 34

3.1 3.2 3.3 3.4

4

数据寄存器(CRC_DR) 35 独立数据寄存器(CRC_IDR) 35 控制寄存器(CRC_CR) 36 CRC寄存器映像 36

电源控制(PWR) 37 4.1

电源 4.1.1 4.1.2 4.1.3 4.2

4.2.1 4.2.2 4.3

4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.4

4.4.1 4.4.2 4.4.3

37

独立的A/D转换器供电和参考电压 37 电池备份区域 38 电压调节器 38

38

上电复位(POR)和掉电复位(PDR) 38 可编程电压监测器(PVD) 39

40

降低系统时钟 40 外部时钟的控制 40 睡眠模式 40 停止模式 41 待机模式 42 低功耗模式下的自动唤醒(AWU) 43

电源管理器

低功耗模式

电源控制寄存器 44

5

电源控制寄存器(PWR_CR) 44 电源控制/状态寄存器(PWR_CSR) 45 PWR寄存器地址映像 46

备份寄存器(BKP) 47 5.1 5.2

BKP简介 BKP特性

47 47 7/754

stm32 STM32中文参考手册

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。(www.61k.com]请读者随时注意在ST网站下载更新版本

stm32 STM32中文参考手册

目录 STM32F10xxx参考手册

5.3 BKP功能描述

5.3.1

5.3.2

5.4

5.4.1

5.4.2

5.4.3

5.4.4

5.4.5 47 侵入检测 47 RTC校准 48 BKP寄存器描述 48

6 备份数据寄存器x(BKP_DRx) (x = 1 … 10) 48 RTC时钟校准寄存器(BKP_RTCCR) 48 备份控制寄存器(BKP_CR) 49 备份控制/状态寄存器(BKP_CSR) 49 BKP寄存器映像 51 小容量、中容量和大容量产品的复位和时钟控制(RCC) 54

6.1 复位

6.1.1

6.1.2

6.1.3

6.2 时钟

6.2.1

6.2.2

6.2.3

6.2.4

6.2.5

6.2.6

6.2.7

6.2.8

6.2.9

6.2.10

6.3

6.3.1

6.3.2

6.3.3

6.3.4

6.3.5

6.3.6

6.3.7

6.3.8

6.3.9

6.3.10

6.3.11 54 系统复位 54 电源复位 54 备份域复位 55 55 HSE时钟 57 HSI时钟 57 PLL 58 LSE时钟 58 LSI时钟 58 系统时钟(SYSCLK)选择 59 时钟安全系统(CSS) 59 RTC时钟 59 看门狗时钟 59 时钟输出 59 RCC寄存器描述 60

7 时钟控制寄存器(RCC_CR) 60 时钟配置寄存器(RCC_CFGR) 61 时钟中断寄存器 (RCC_CIR) 63 APB2外设复位寄存器 (RCC_APB2RSTR) 65 APB1外设复位寄存器 (RCC_APB1RSTR) 67 AHB外设时钟使能寄存器 (RCC_AHBENR) 69 APB2外设时钟使能寄存器(RCC_APB2ENR) 70 APB1外设时钟使能寄存器(RCC_APB1ENR) 71 备份域控制寄存器 (RCC_BDCR) 74 控制/状态寄存器 (RCC_CSR) 75 RCC寄存器地址映像 77 互联型产品的复位和时钟控制(RCC) 78

7.1 复位

7.1.1

7.1.2

7.1.3

7.2 时钟

7.2.1

7.2.2

7.2.3

7.2.4

7.2.5

7.2.6 78 系统复位 78 电源复位 78 备份域复位 79 79 HSE时钟 81 HSI时钟 82 PLL 82 LSE时钟 82 LSI时钟 83 系统时钟(SYSCLK)选择 83

8/754

stm32 STM32中文参考手册

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。(www.61k.com]请读者随时注意在ST网站下载更新版本

stm32 STM32中文参考手册

目录 STM32F10xxx参考手册

7.2.7

7.2.8

7.2.9

7.2.10

7.3

7.3.1

7.3.2

7.3.3

7.3.4

7.3.5

7.3.6

7.3.7

7.3.8

7.3.9

7.3.10

7.3.11

7.3.12

扩展:stm32中文参考手册 pdf / stm32中文参考手册 v10 / stm32的datebase

7.3.13 时钟安全系统(CSS) 83 RTC时钟 83 看门狗时钟 84 时钟输出 84 85 RCC寄存器

8 时钟控制寄存器(RCC_CR) 85 时钟配置寄存器(RCC_CFGR) 86 时钟中断寄存器(RCC_CIR) 88 APB2外设复位寄存器(RCC_APB2RSTR) 91 APB1外设复位寄存器(RCC_APB1RSTR) 92 AHB外设时钟使能寄存器(RCC_AHBENR) 94 APB2外设时钟使能寄存器(RCC_APB2ENR) 95 APB1外设时钟使能寄存器(RCC_APB1ENR) 97 备份域控制寄存器(RCC_BDCR) 99 控制/状态寄存器(RCC_CSR) 100 AHB外设时钟复位寄存器(RCC_AHBRSTR) 101 时钟配置寄存器2(RCC_CFGR2) 101 RCC寄存器地址映像 103 通用和复用功能I/O(GPIO和AFIO) 105

8.1 GPIO功能描述

8.1.1

8.1.2

8.1.3

8.1.4

8.1.5

8.1.6

8.1.7

8.1.8

8.1.9

8.1.10

8.1.11

8.2

8.2.1

8.2.2

8.2.3

8.2.4

8.2.5

8.2.6

8.2.7

8.3

8.3.1

8.3.2

8.3.3

8.3.4

8.3.5

8.3.6

8.3.7

8.3.8

8.3.9

8.3.10 105 通用I/O(GPIO) 106 单独的位设置或位清除 107 外部中断/唤醒线 107 复用功能(AF) 107 软件重新映射I/O复用功能 107 GPIO锁定机制 107 输入配置 107 输出配置 108 复用功能配置 109 模拟输入配置 109 外设的GPIO配置 110 端口配置低寄存器(GPIOx_CRL) (x=A..E) 113 端口配置高寄存器(GPIOx_CRH) (x=A..E) 114 端口输入数据寄存器(GPIOx_IDR) (x=A..E) 114 端口输出数据寄存器(GPIOx_ODR) (x=A..E) 115 端口位设置/清除寄存器(GPIOx_BSRR) (x=A..E) 115 端口位清除寄存器(GPIOx_BRR) (x=A..E) 115 端口配置锁定寄存器(GPIOx_LCKR) (x=A..E) 116 把OSC32_IN/OSC32_OUT作为GPIO 端口PC14/PC15 116 把OSC_IN/OSC_OUT引脚作为GPIO端口PD0/PD1 117 CAN1复用功能重映射 117 CAN2复用功能重映射 117 JTAG/SWD复用功能重映射 117 ADC复用功能重映射 118 定时器复用功能重映射 118 USART复用功能重映射 119 I2C1复用功能重映射 120 SPI 1复用功能重映射 120

9/754

stm32 STM32中文参考手册

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。(www.61k.com]请读者随时注意在ST网站下载更新版本 GPIO寄存器描述 113 复用功能I/O和调试配置(AFIO) 116

stm32 STM32中文参考手册

目录 STM32F10xxx参考手册

8.3.11

8.3.12

8.4

8.4.1

8.4.2

8.4.3

8.4.4

8.4.5

8.4.6

8.5 SPI3复用功能重映射 120 以太网复用功能重映射 121 事件控制寄存器(AFIO_EVCR) 121 复用重映射和调试I/O配置寄存器(AFIO_MAPR) 121 外部中断配置寄存器1(AFIO_EXTICR1) 126 外部中断配置寄存器2(AFIO_EXTICR2) 127 外部中断配置寄存器3(AFIO_EXTICR3) 127 外部中断配置寄存器4(AFIO_EXTICR4) 128 AFIO寄存器描述 121 GPIO 和AFIO寄存器地址映象 129

嵌套向量中断控制器 130

9.1.1

9.1.2 系统嘀嗒(SysTick)校准值寄存器 130 中断和异常向量 130

主要特性 134

框图 135

唤醒事件管理 135

功能说明 135

外部中断/事件线路映像 137 9 中断和事件 130 9.1 9.2 外部中断/事件控制器(EXTI) 134 9.2.1 9.2.2 9.2.3 9.2.4 9.2.5

9.3 EXTI 寄存器描述 138

9.3.1

9.3.2

9.3.3

9.3.4

9.3.5

9.3.6

9.3.7

10 中断屏蔽寄存器(EXTI_IMR) 138 事件屏蔽寄存器(EXTI_EMR) 138 上升沿触发选择寄存器(EXTI_RTSR) 139 下降沿触发选择寄存器(EXTI_FTSR) 139 软件中断事件寄存器(EXTI_SWIER) 140 挂起寄存器(EXTI_PR) 140 外部中断/事件寄存器映像 141 DMA控制器(DMA) 142

10.1

10.2

10.3 DMA简介 DMA主要特性 功能描述 142 142 143

10.3.1

10.3.2

10.3.3

10.3.4

10.3.5

10.3.6

10.3.7

10.4

10.4.1

10.4.2

10.4.3

10.4.4

10.4.5

10.4.6

10.4.7 DMA处理 143 仲裁器 144 DMA 通道 144 可编程的数据传输宽度、对齐方式和数据大小端 145 错误管理 146 中断 146 DMA请求映像 147 149 DMA寄存器

11 DMA中断状态寄存器(DMA_ISR) 149 DMA中断标志清除寄存器(DMA_IFCR) 150 DMA通道x配置寄存器(DMA_CCRx)(x = 1…7) 150 DMA通道x传输数量寄存器(DMA_CNDTRx)(x = 1…7) 152 DMA通道x外设地址寄存器(DMA_CPARx)(x = 1…7) 152 DMA通道x存储器地址寄存器(DMA_CMARx)(x = 1…7) 152 DMA寄存器映像 153 模拟/数字转换(ADC) 155

10/754

stm32 STM32中文参考手册

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。[www.61k.com]请读者随时注意在ST网站下载更新版本

stm32 STM32中文参考手册

目录 STM32F10xxx参考手册

11.1 11.2 11.3

ADC介绍 ADC主要特征 ADC功能描述

155 155 156

11.3.1

11.3.2 11.3.3 11.3.4 11.3.5 11.3.6 11.3.7 11.3.8 11.3.9 11.3.10 11.4 11.5 11.6 11.7 11.8 11.9

校准

ADC开关控制 157 ADC时钟 157 通道选择 157 单次转换模式 157 连续转换模式 158 时序图 158 模拟看门狗 158 扫描模式 159 注入通道管理 159 间断模式 160

161 161 162 163 163

数据对齐 外部触发转换 DMA请求 双ADC模式

可编程的通道采样时间 161

11.9.1 11.9.2 11.9.3 11.9.4 11.9.5 11.9.6 11.9.7 11.9.8 11.9.9 同步注入模式 164 同步规则模式 165 快速交叉模式 165 慢速交叉模式 166 交替触发模式 166 独立模式 167 混合的规则/注入同步模式 167 混合的同步规则+交替触发模式 167 混合同步注入 + 交叉模式 168

168 169 170

扩展:stm32中文参考手册 pdf / stm32中文参考手册 v10 / stm32的datebase

11.10 温度传感器 11.11 ADC中断 11.12 ADC寄存器

11.12.1 11.12.2 11.12.3 11.12.4 11.12.5 11.12.6 11.12.7 11.12.8 11.12.9 11.12.10 11.12.11 11.12.12 11.12.13 11.12.14 11.12.15

12

ADC状态寄存器(ADC_SR) 170 ADC控制寄存器1(ADC_CR1) 171 ADC控制寄存器2(ADC_CR2) 173 ADC采样时间寄存器1(ADC_SMPR1) 175 ADC采样时间寄存器2(ADC_SMPR2) 175 ADC注入通道数据偏移寄存器x (ADC_JOFRx)(x=1..4) 176 ADC看门狗高阀值寄存器(ADC_HTR) 176 ADC看门狗低阀值寄存器(ADC_LRT) 176 ADC规则序列寄存器1(ADC_SQR1) 177 ADC规则序列寄存器2(ADC_SQR2) 177 ADC规则序列寄存器3(ADC_SQR3) 178 ADC注入序列寄存器(ADC_JSQR) 178 ADC 注入数据寄存器x (ADC_JDRx) (x= 1..4) 179 ADC规则数据寄存器(ADC_DR) 179 ADC寄存器地址映像 180

数字/模拟转换(DAC) 182 12.1

DAC简介

182 11/754

stm32 STM32中文参考手册

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。(www.61k.com]请读者随时注意在ST网站下载更新版本

stm32 STM32中文参考手册

目录 STM32F10xxx参考手册

12.2

12.3 DAC主要特征 DAC功能描述 182 183

12.3.1

12.3.2

12.3.3

12.3.4

12.3.5

12.3.6

12.3.7

12.3.8

12.3.9

12.4

12.4.1

12.4.2

12.4.3

12.4.4

12.4.5

12.4.6

12.4.7

12.4.8

12.4.9

12.4.10

12.4.11

12.5

12.5.1

12.5.2

12.5.3

12.5.4

12.5.5

12.5.6

12.5.7

12.5.8

12.5.9

12.5.10

12.5.11

12.5.12

12.5.13

12.5.14 使能DAC通道 183 使能DAC输出缓存 184 DAC数据格式 184 DAC转换 185 DAC输出电压 185 选择DAC触发 185 DMA请求 186 噪声生成 186 三角波生成 187 不使用波形发生器的独立触发 187 使用相同LFSR的独立触发 188 使用不同LFSR的独立触发 188 产生相同三角波的独立触发 188 产生不同三角波的独立触发 188 同时软件启动 189 不使用波形发生器的同时触发 189 使用相同LFSR的同时触发 189 使用不同LFSR的同时触发 189 使用相同三角波发生器的同时触发 189 使用不同三角波发生器的同时触发 190 191 双DAC通道转换 187 DAC寄存器

13 DAC控制寄存器(DAC_CR) 191 DAC软件触发寄存器(DAC_SWTRIGR) 193 DAC通道1的12位右对齐数据保持寄存器(DAC_DHR12R1) 194 DAC通道1的12位左对齐数据保持寄存器(DAC_DHR12L1) 194 DAC通道1的8位右对齐数据保持寄存器(DAC_DHR8R1) 194 DAC通道2的12位右对齐数据保持寄存器(DAC_DHR12R2) 195 DAC通道2的12位左对齐数据保持寄存器(DAC_DHR12L2) 195 DAC通道2的8位右对齐数据保持寄存器(DAC_DHR8R2) 195 双DAC的12位右对齐数据保持寄存器(DAC_DHR12RD) 196 双DAC的12位左对齐数据保持寄存器(DAC_DHR12LD) 196 双DAC的8位右对齐数据保持寄存器(DAC_DHR8RD) 196 DAC通道1数据输出寄存器(DAC_DOR1) 197 DAC通道2数据输出寄存器(DAC_DOR2) 197 DAC寄存器映像 198 高级控制定时器(TIM1和TIM8) 199

13.1

13.2

13.3 TIM1和TIM8简介 199 TIM1和TIM8主要特性 199 TIM1和TIM8功能描述 200

时基单元 200

计数器模式 202

重复计数器 209

时钟选择 210

捕获/比较通道 213

输入捕获模式 215

PWM输入模式 216

强置输出模式 216

12/754

stm32 STM32中文参考手册

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。[www.61k.com]请读者随时注意在ST网站下载更新版本 13.3.1 13.3.2 13.3.3 13.3.4 13.3.5 13.3.6 13.3.7 13.3.8

stm32 STM32中文参考手册

目录 STM32F10xxx参考手册

13.3.9

13.3.10

13.3.11

13.3.12

13.3.13

13.3.14

13.3.15

13.3.16

13.3.17

13.3.18

13.3.19

13.3.20

13.3.21

13.4

13.4.1

13.4.2

13.4.3

13.4.4

13.4.5

13.4.6

13.4.7

13.4.8

13.4.9

13.4.10

13.4.11

13.4.12

13.4.13

13.4.14

13.4.15

13.4.16

13.4.17

13.4.18

13.4.19

13.4.20

13.4.21 输出比较模式 217 PWM模式 218 互补输出和死区插入 220 使用刹车功能 221 在外部事件时清除OCxREF信号 223 产生六步PWM输出 223 单脉冲模式 224 编码器接口模式 225 定时器输入异或功能 227 与霍尔传感器的接口 227 TIMx定时器和外部触发的同步 229 定时器同步 232 调试模式 232 TIM1和TIM8寄存器描述 233

14 TIM1和TIM8控制寄存器1(TIMx_CR1) 233 TIM1和TIM8控制寄存器2(TIMx_CR2) 234 TIM1和TIM8从模式控制寄存器(TIMx_SMCR) 235 TIM1和TIM8 DMA/中断使能寄存器(TIMx_DIER) 237 TIM1和TIM8状态寄存器(TIMx_SR) 238 TIM1和TIM8事件产生寄存器(TIMx_EGR) 239 TIM1和TIM8捕获/比较模式寄存器1(TIMx_CCMR1) 240 TIM1和TIM8捕获/比较模式寄存器2(TIMx_CCMR2) 242 TIM1和TIM8捕获/比较使能寄存器(TIMx_CCER) 244 TIM1和TIM8计数器(TIMx_CNT) 246 TIM1和TIM8预分频器(TIMx_PSC) 246 TIM1和TIM8自动重装载寄存器(TIMx_ARR) 246 TIM1和TIM8重复计数寄存器(TIMx_RCR) 246 TIM1和TIM8捕获/比较寄存器1(TIMx_CCR1) 247 TIM1和TIM8捕获/比较寄存器2(TIMx_CCR2) 247 TIM1和TIM8捕获/比较寄存器3(TIMx_CCR3) 247 TIM1和TIM8捕获/比较寄存器(TIMx_CCR4) 248 TIM1和TIM8刹车和死区寄存器(TIMx_BDTR) 248 TIM1和TIM8 DMA控制寄存器(TIMx_DCR) 249 TIM1和TIM8连续模式的DMA地址(TIMx_DMAR) 250 TIM1和TIM8寄存器图 251 通用定时器(TIMx) 253

扩展:stm32中文参考手册 pdf / stm32中文参考手册 v10 / stm32的datebase

14.1

14.2

14.3 TIMx简介 TIMx主要功能 TIMx功能描述 253 253 254

14.3.1

14.3.2

14.3.3

14.3.4

14.3.5

14.3.6

14.3.7

14.3.8

14.3.9

14.3.10

14.3.11

14.3.12 时基单元 254 计数器模式 255 时钟选择 263 捕获/比较通道 265 输入捕获模式 267 PWM输入模式 267 强置输出模式 268 输出比较模式 268 PWM 模式 269 单脉冲模式 271 在外部事件时清除OCxREF信号 273 编码器接口模式 273

13/754

stm32 STM32中文参考手册

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。(www.61k.com)请读者随时注意在ST网站下载更新版本

stm32 STM32中文参考手册

目录 STM32F10xxx参考手册

14.3.13

14.3.14

14.3.15

14.3.16

14.4

14.4.1

14.4.2

14.4.3

14.4.4

14.4.5

14.4.6

14.4.7

14.4.8

14.4.9

14.4.10

14.4.11

14.4.12

14.4.13

14.4.14

14.4.15

14.4.16

14.4.17

14.4.18

14.4.19 定时器输入异或功能 275 定时器和外部触发的同步 275 定时器同步 277 调试模式 281 TIMx寄存器描述 282

15 控制寄存器1(TIMx_CR1) 282 控制寄存器2(TIMx_CR2) 283 从模式控制寄存器(TIMx_SMCR) 284 DMA/中断使能寄存器(TIMx_DIER) 285 状态寄存器(TIMx_SR) 286 事件产生寄存器(TIMx_EGR) 287 捕获/比较模式寄存器1(TIMx_CCMR1) 288 捕获/比较模式寄存器2(TIMx_CCMR2) 290 捕获/比较使能寄存器(TIMx_CCER) 292 计数器(TIMx_CNT) 293 预分频器(TIMx_PSC) 293 自动重装载寄存器(TIMx_ARR) 293 捕获/比较寄存器1(TIMx_CCR1) 293 捕获/比较寄存器2(TIMx_CCR2) 294 捕获/比较寄存器3(TIMx_CCR3) 294 捕获/比较寄存器4(TIMx_CCR4) 294 DMA控制寄存器(TIMx_DCR) 295 连续模式的DMA地址(TIMx_DMAR) 295 TIMx寄存器图 296 基本定时器(TIM6和TIM7) 298

15.1

15.2

15.3 TIM6和TIM7简介 298 TIM6和TIM7的主要特性 298 TIM6和TIM7的功能 299

时基单元 299

计数模式 300

时钟源 302

调试模式 303 15.3.1 15.3.2 15.3.3 15.3.4

15.4

15.4.1

15.4.2

15.4.3

15.4.4

15.4.5

15.4.6

15.4.7

15.4.8

15.4.9 TIM6和TIM7寄存器 303

16 TIM6和TIM7控制寄存器1(TIMx_CR1) 303 TIM6和TIM7控制寄存器2(TIMx_CR2) 304 TIM6和TIM7 DMA/中断使能寄存器(TIMx_DIER) 304 TIM6和TIM7状态寄存器(TIMx_SR) 305 TIM6和TIM7事件产生寄存器(TIMx_EGR) 305 TIM6和TIM7计数器(TIMx_CNT) 305 TIM6和TIM7预分频器(TIMx_PSC) 306 TIM6和TIM7自动重装载寄存器(TIMx_ARR) 306 TIM6和TIM7寄存器图 307 实时时钟(RTC) 308

16.1

16.2

16.3 RTC简介 主要特性 功能描述 308 308 308

16.3.1

16.3.2

16.3.3 概述 308 复位过程 309 读RTC寄存器 309

14/754

stm32 STM32中文参考手册

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。[www.61k.com]请读者随时注意在ST网站下载更新版本

stm32 STM32中文参考手册

目录 STM32F10xxx参考手册

16.3.4

16.3.5

16.4

16.4.1

16.4.2

16.4.3

16.4.4

16.4.5

16.4.6

16.4.7 配置RTC寄存器 310 RTC标志的设置 310 RTC寄存器描述 311

17 RTC控制寄存器高位(RTC_CRH) 311 RTC控制寄存器低位(RTC_CRL) 311 RTC预分频装载寄存器(RTC_PRLH/RTC_PRLL) 312 RTC预分频器余数寄存器(RTC_DIVH / RTC_DIVL) 313 RTC计数器寄存器 (RTC_CNTH / RTC_CNTL) 313 RTC闹钟寄存器(RTC_ALRH/RTC_ALRL) 314 RTC寄存器映像 315 独立看门狗(IWDG) 316

17.1

17.2

17.3 简介 IWDG主要性能 IWDG功能描述 316 316 316

17.3.1

17.3.2

17.3.3

17.4

17.4.1

17.4.2

17.4.3

17.4.4

17.4.5 硬件看门狗 316 寄存器访问保护 316 调试模式 316 IWDG寄存器描述 317

18 键寄存器(IWDG_KR) 317 预分频寄存器(IWDG_PR) 318 重装载寄存器(IWDG_RLR) 318 状态寄存器(IWDG_SR) 319 IWDG寄存器映像 319 窗口看门狗(WWDG) 320

18.1

18.2

18.3

18.4

18.5

18.6 WWDG简介 320 WWDG主要特性 320 WWDG功能描述 320 如何编写看门狗超时程序 321 调试模式 寄存器描述 322 322 19 控制寄存器(WWDG_CR) 322 配置寄存器(WWDG_CFR) 322 状态寄存器(WWDG_SR) 323 WWDG寄存器映像 323 灵活的静态存储器控制器(FSMC) 324

19.1

19.2

19.3

19.4 FSMC功能描述 框图 AHB接口 324 324 325 支持的存储器和操作 325

NOR和PSRAM地址映像 327

NAND和PC卡地址映像 327

外部存储器接口信号 329

支持的存储器及其操作 330

时序规则 330

NOR闪存和PSRAM控制器时序图 330

15/754

stm32 STM32中文参考手册

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。[www.61k.com)请读者随时注意在ST网站下载更新版本 18.6.1 18.6.2 18.6.3 18.6.4 19.3.1 19.4.1 19.4.2 19.5 19.5.1 19.5.2 19.5.3 19.5.4 外部设备地址映像 326 NOR闪存和PSRAM控制器 328

stm32 STM32中文参考手册

目录 STM32F10xxx参考手册

19.5.5

19.5.6

19.6

19.6.1

19.6.2

扩展:stm32中文参考手册 pdf / stm32中文参考手册 v10 / stm32的datebase

19.6.3

19.6.4

19.6.5

19.6.6

19.6.7

19.7 同步的成组读 343 NOR闪存和PSRAM控制器寄存器 347 外部存储器接口信号 352 NAND闪存/PC卡支持的存储器及其操作 353 NAND闪存、ATA和PC卡时序图 353 NAND闪存操作 354 NAND闪存预等待功能 355 NAND闪存的纠错码ECC计算(NAND闪存) 356 NAND闪存和PC卡控制器寄存器 356 NAND闪存和PC卡控制器 352 FSMC寄存器地址映象 362

SDIO主要功能

SDIO总线拓扑

SDIO功能描述 363 363 366 20 SDIO接口(SDIO) 363 20.1 20.2 20.3

20.3.1

20.3.2

20.4

20.4.1

20.4.2

20.4.3

20.4.4

20.4.5

20.4.6

20.4.7

20.4.8

20.4.9

20.4.10

20.4.11

20.4.12

20.4.13

20.4.14

20.5

20.5.1

20.5.2

20.5.3

20.5.4

20.5.5

20.5.6

20.5.7

20.5.8

20.6

20.6.1

20.6.2

20.6.3

20.6.4

20.7

20.7.1

20.7.2 SDIO适配器 367 SDIO AHB接口 374 374 卡识别模式 374 卡复位 374 操作电压范围确认 375 卡识别过程 375 写数据块 376 读数据块 376 数据流操作,数据流写入和数据流读出(只适用于多媒体卡) 376 擦除:成组擦除和扇区擦除 377 宽总线选择和解除选择 378 保护管理 378 卡状态寄存器 380 SD状态寄存器 382 SD的I/O模式 385 命令与响应 385 388 R1(普通响应命令) 388 R1b 388 R2(CID、CSD寄存器) 388 R3(OCR寄存器) 389 R4(快速I/O) 389 R4b 389 R5(中断请求) 390 R6(中断请求) 390 使用SDIO_D2信号线的SDIO I/O读等待操作 390 使用停止SDIO_CK的SDIO读等待操作 391 SDIO暂停/恢复操作 391 SDIO中断 391 命令完成指示关闭 391 命令完成指示使能 391

16/754

stm32 STM32中文参考手册

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。[www.61k.com]请读者随时注意在ST网站下载更新版本 卡功能描述 响应格式 SDIO I/O卡特定的操作 390 CE-ATA特定操作 391

stm32 STM32中文参考手册

目录 STM32F10xxx参考手册

20.7.3

20.7.4

20.8

20.9 CE-ATA中断 392 中止CMD61 392 392 392 硬件流控制 SDIO寄存器

21 SDIO电源控制寄存器(SDIO_POWER) 392 SDIO时钟控制寄存器(SDIO_CLKCR) 392 SDIO参数寄存器(SDIO_ARG) 393 SDIO命令寄存器(SDIO_CMD) 393 SDIO命令响应寄存器(SDIO_RESPCMD) 394 SDIO响应1..4寄存器(SDIO_RESPx) 395 SDIO数据定时器寄存器(SDIO_DTIMER) 395 SDIO数据长度寄存器(SDIO_DLEN) 395 SDIO数据控制寄存器(SDIO_DCTRL) 396 SDIO数据计数器寄存器(SDIO_DCOUNT) 397 SDIO状态寄存器(SDIO_STA) 397 SDIO清除中断寄存器(SDIO_ICR) 398 SDIO中断屏蔽寄存器(SDIO_MASK) 399 SDIO FIFO计数器寄存器(SDIO_FIFOCNT) 401 SDIO数据FIFO寄存器(SDIO_FIFO) 401 SDIO寄存器映像 402 USB全速设备接口(USB) 403

21.1

21.2

21.3

21.4 USB简介 USB主要特征 USB功能描述 403 403 404 20.9.1 20.9.2 20.9.3 20.9.4 20.9.5 20.9.6 20.9.7 20.9.8 20.9.9 20.9.10 20.9.11 20.9.12 20.9.13 20.9.14 20.9.15 20.9.16 21.3.1

21.4.1

21.4.2

21.4.3

21.4.4

21.4.5

21.5

21.5.1

21.5.2

21.5.3

21.5.4 USB功能模块描述 405 通用USB设备编程 406 系统复位和上电复位 406 双缓冲端点 409 同步传输 410 挂起/恢复事件 411 编程中需要考虑的问题 406 USB寄存器描述 412

22 通用寄存器 412 端点寄存器 416 缓冲区描述表 419 USB寄存器映像 421 控制器局域网(bxCAN) 423

22.1

22.2

22.3 bxCAN简介 423 bxCAN主要特点 423 bxCAN总体描述 424

CAN 2.0B主动内核 424

控制、状态和配置寄存器 424

发送邮箱 424

接收过滤器 424

初始化模式 426

正常模式 426

睡眠模式(低功耗) 426

17/754

stm32 STM32中文参考手册

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。(www.61k.com]请读者随时注意在ST网站下载更新版本 22.3.1 22.3.2 22.3.3 22.3.4 22.4 22.4.1 22.4.2 22.4.3 bxCAN工作模式 426

stm32 STM32中文参考手册

目录 STM32F10xxx参考手册

22.5 测试模式 427

22.5.1

22.5.2

22.5.3

22.6

22.7 静默模式 427 环回模式 427 环回静默模式 428 STM32F10xxx处于调试模式时 428 bxCAN功能描述 428

发送处理 428

时间触发通信模式 430

接收管理 430

标识符过滤 431

报文存储 434

出错管理 435

位时间特性 436

438 22.7.1 22.7.2 22.7.3 22.7.4 22.7.5 22.7.6 22.7.7 22.8

22.9 bxCAN中断 CAN 寄存器描述 439 23 寄存器访问保护 439 CAN控制和状态寄存器 439 CAN邮箱寄存器 447 CAN过滤器寄存器 451 bxCAN寄存器列表 454 串行外设接口(SPI) 457

23.1

23.2 SPI简介

SPI特征

I2S功能 457 457 458

459 SPI和I2S主要特征 457 22.9.1 22.9.2 22.9.3 22.9.4 22.9.5 23.2.1 23.2.2 23.3

23.3.1

23.3.2

23.3.3

23.3.4

23.3.5

23.3.6

23.3.7

23.3.8

23.3.9

23.3.10

23.3.11

23.4

23.4.1

23.4.2

23.4.3

23.4.4

23.4.5

23.4.6

23.4.7

23.4.8

23.4.9

23.5 SPI功能描述 概述 459 配置SPI为从模式 462 配置SPI为主模式 462 配置SPI为单工通信 463 数据发送与接收过程 463 CRC计算 468 状态标志 469 关闭SPI 470 利用DMA的SPI通信 470 错误标志 472 SPI中断 472 473 I2S功能描述 473 支持的音频协议 474 时钟发生器 479 I2S主模式 482 I2S从模式 483 状态标志位 484 错误标志位 485 I2S中断 485 DMA功能 485 I2S功能描述 SPI和I2S寄存器描述 486

扩展:stm32中文参考手册 pdf / stm32中文参考手册 v10 / stm32的datebase

18/754

stm32 STM32中文参考手册

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。(www.61k.com]请读者随时注意在ST网站下载更新版本

stm32 STM32中文参考手册

目录 STM32F10xxx参考手册

23.5.1

23.5.2

23.5.3

23.5.4

23.5.5

23.5.6

23.5.7

23.5.8

23.5.9

23.5.10 SPI控制寄存器1(SPI_CR1)(I2S模式下不使用) 486 SPI控制寄存器2(SPI_CR2) 487 SPI 状态寄存器(SPI_SR) 488 SPI 数据寄存器(SPI_DR) 489 SPI CRC多项式寄存器(SPI_CRCPR)(I2S模式下不使用) 489 SPI Rx CRC寄存器(SPI_RXCRCR)(I2S模式下不使用) 490 SPI Tx CRC寄存器(SPI_TXCRCR) 490 SPI_I2S配置寄存器(SPI_I2S_CFGR) 490 SPI_I2S预分频寄存器(SPI_I2SPR) 491 SPI 寄存器地址映象 492

493

493

493

494 24 I2C接口 24.1 24.2 24.3 I2C简介 I2C主要特点 I2C功能描述

24.3.1

24.3.2

24.3.3

24.3.4

24.3.5

24.3.6

24.3.7

24.3.8

24.4

24.5

24.6 模式选择 494 I2C从模式 495 I2C主模式 497 错误条件 499 SDA/SCL线控制 500 SMBus 501 DMA请求 502 包错误校验(PEC) 503 504 505 505 I2C中断请求 I2C调试模式 I2C寄存器描述

25 控制寄存器1(I2C_CR1) 505 控制寄存器2(I2C_CR2) 507 自身地址寄存器1(I2C_OAR1) 508 自身地址寄存器2(I2C_OAR2) 509 数据寄存器(I2C_DR) 509 状态寄存器1(I2C_SR1) 510 状态寄存器2 (I2C_SR2) 512 时钟控制寄存器(I2C_CCR) 513 TRISE寄存器(I2C_TRISE) 514 I2C寄存器地址映象 515 通用同步异步收发器(USART) 516

25.1

25.2

25.3 USART介绍 516 USART主要特性 516 USART功能概述 517

USART 特性描述 518

发送器 519

接收器 521

分数波特率的产生 524

USART接收器容忍时钟的变化 525

多处理器通信 526

校验控制 527

LIN(局域互联网)模式 528

USART 同步模式 530

单线半双工通信 532

19/754

stm32 STM32中文参考手册

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。[www.61k.com]请读者随时注意在ST网站下载更新版本 24.6.1 24.6.2 24.6.3 24.6.4 24.6.5 24.6.6 24.6.7 24.6.8 24.6.9 24.6.10 25.3.1 25.3.2 25.3.3 25.3.4 25.3.5 25.3.6 25.3.7 25.3.8 25.3.9 25.3.10

stm32 STM32中文参考手册

目录 STM32F10xxx参考手册

25.3.11

25.3.12

25.3.13

25.3.14

25.4

25.5

25.6 智能卡 532 IrDA SIR ENDEC 功能模块 533 利用DMA连续通信 535 硬件流控制 537 USART中断请求 538 USART模式配置 539 USART寄存器描述 540 26 状态寄存器(USART_SR) 540 数据寄存器(USART_DR) 541 波特比率寄存器(USART_BRR) 542 控制寄存器1(USART_CR1) 542 控制寄存器2(USART_CR2) 544 控制寄存器3(USART_CR3) 545 保护时间和预分频寄存器(USART_GTPR) 546 USART寄存器地址映象 548 USB OTG全速(OTG_FS) 549

26.1

26.2 OTG模块介绍 549 OTG_FS主要功能 549

通用功能 549

主机模式功能 550

设备模式功能 550

OTG全速控制器 551

全速OTG PHY(物理接口) 551

ID信号检测 552

HNP双角色设备 552

SRP双角色设备 553

553

具备SRP功能的设备 553

设备状态 554

设备端点 554

556

具备SRP功能的主机 556

USB主机状态 557

主机通道 558

主机调度器 558

560

主机SOF 560

设备SOF 560

560

562 25.6.1 25.6.2 25.6.3 25.6.4 25.6.5 25.6.6 25.6.7 25.6.8 26.2.1 26.2.2 26.2.3 26.3 26.3.1 26.3.2 26.4 26.4.1 26.4.2 26.4.3 26.5 26.5.1 26.5.2 26.5.3 26.6 26.6.1 26.6.2 26.6.3 26.6.4 26.7 26.7.1 26.7.2 26.8 26.9 OTG_FS功能描述 551 OTG双角色设备(DRD) 552 USB设备模式 USB主机 SOF触发 供电选项 USB数据FIFO

26.10 设备模式下的FIFO结构 563

26.10.1

26.10.2

26.11.1 设备模式下的接收FIFO 563 设备模式下的发送FIFO 563 主机模式下的接收FIFO 564

20/754

stm32 STM32中文参考手册

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。[www.61k.com]请读者随时注意在ST网站下载更新版本 26.11 主机模式下的FIFO结构 564

stm32 STM32中文参考手册

目录 STM32F10xxx参考手册

26.11.2 主机模式下的发送FIFO 564

565

566 26.12 USB系统性能 26.13 OTG_FS中断

26.14.1

26.14.2

26.14.3

26.14.4

26.14.5

26.14.6

26.15.1

26.15.2

26.15.3

26.15.4

26.15.5

26.15.6

26.15.7

26.15.8 26.14 OTG_FS控制和状态寄存器 566 CSR存储器映像 567 OTG_FS全局寄存器 570 主机模式下的寄存器 585 设备模式下的寄存器 593 OTG_FS电源和时钟门控寄存器(OTG_FS_PCGCCTL) 608 OTG_FS寄存器映像 610 26.15 OTG_FS编程规则 617 控制器初始化 617 主机模式下的初始化 617 设备模式下的初始化 617 主机模式下的编程规则 618 设备模式下的编程规则 632 操作流程 633 最差情况下的响应时间 646 OTG编程规则 648 以太网(ETH):具有DMA控制器的介质访问控制(MAC) 652 27.1

27.2 以太网模块介绍 652 以太网模块主要功能 652

MAC控制器功能 652

DMA功能 653

PTP功能 654 27 27.2.1 27.2.2 27.2.3

扩展:stm32中文参考手册 pdf / stm32中文参考手册 v10 / stm32的datebase

27.3

27.4 以太网模块引脚和内部信号 654 以太网模块功能描述:SMI、MII和RMII 655

站点管理接口(SMI) 655

独立于介质的接口:MII 657

精简的独立于介质的接口:RMII 659

MII/RMII的选择 660

MAC 802.3帧格式 661

MAC帧的传输 663

MAC帧的接收 669

MAC中断 673

MAC过滤 673

MAC自循环模式 675

MAC管理计数器:MMC 675

电源管理:PMT 676

精确时间协议(IEEE1588 PTP) 678

使用DMA发送的初始化步骤 683

主机总线突发访问 683

主机数据缓存对齐 684

缓冲区大小计算 684

DMA仲裁器 684

DMA错误响应 684

21/754

stm32 STM32中文参考手册

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。[www.61k.com]请读者随时注意在ST网站下载更新版本 27.4.1 27.4.2 27.4.3 27.4.4 27.5 27.5.1 27.5.2 27.5.3 27.5.4 27.5.5 27.5.6 27.5.7 27.5.8 27.5.9 27.6 27.6.1 27.6.2 27.6.3 27.6.4 27.6.5 27.6.6 以太网模块功能描述:MAC 802.3 660 以太网功能描述:DMA控制器操作 682

stm32 STM32中文参考手册

目录 STM32F10xxx参考手册

27.6.7

27.6.8

27.6.9

27.7

27.8 发送DMA设置 684 接收DMA设置 694 DMA中断 700 701 以太网中断 以太网寄存器描述 702 28 MAC寄存器描述 702 MMC寄存器描述 713 IEEE 1588时间戳寄存器 716 DMA寄存器描述 719 以太网寄存器映像 729 器件电子签名 732

28.1

28.2 存储器容量寄存器 732 闪存容量寄存器 732 产品唯一身份标识寄存器(96位) 732

概况

ARM参考文献 734 735 28.1.1 27.8.1 27.8.2 27.8.3 27.8.4 27.8.5 29 调试支持(DBG) 734 29.1 29.2

29.3

29.4 SWJ调试端口(serial wire and JTAG) 735 JTAG-DP和SW-DP切换的机制 736

SWJ调试端口脚 736

灵活的SWJ-DP脚分配 736

JTAG脚上的内部上拉和下拉 737

利用串行接口并释放不用的调试脚作为普通I/O口 737 引脚分布和调试端口脚 736 29.3.1 29.4.1 29.4.2 29.4.3 29.4.4

29.5

29.6 STM32F10xxx JTAG TAP 连接 738 ID 代码和锁定机制 738

微控制器设备ID编码 738

边界扫描TAP 739

Cortex-M3 TAP 740

Cortex-M3 JEDEC-106 ID代码 740

740

741 29.6.1 29.6.2 29.6.3 29.6.4 29.7 29.8 JTAG调试端口 SW调试端口

29.8.1

29.8.2

29.8.3

29.8.4

29.8.5

29.8.6

29.9 SW协议介绍 741 SW协议序列 741 SW-DP状态机(Reset, idle states, ID code) 742 DP和AP读/写访问 742 SW-DP寄存器 742 SW-AP寄存器 743

744 对于JTAG-DP或SWDP都有效的AHB-AP (AHB 访问端口) 743 29.10 内核调试

29.11 调试器主机在系统复位下的连接能力 744 29.12 FPB (Flash patch breakpoint) 744 29.13 DWT(数据观察点触发data watchpoint trigger) 745 29.14 ITM (指令跟踪微单元 instrumentation trace macrocell) 745

29.14.1

29.14.2 概述 745 时间戳包,同步和溢出包 745

22/754

stm32 STM32中文参考手册

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。[www.61k.com]请读者随时注意在ST网站下载更新版本

stm32 STM32中文参考手册

目录 STM32F10xxx参考手册

29.15 ETM模块(嵌入式跟踪微单元Embedded Trace Macrocell) 746

29.15.1

29.15.2

29.15.3

29.15.4

29.16.1

29.16.2

29.16.3

29.17.1

29.17.2

29.17.3

29.17.4

29.17.5

29.17.6

29.17.7

29.17.8

29.17.9

29.17.10

概述 746 信号协议和包类型 746 主要的ETM寄存器 747 配置实例 747 低功耗模式的调试支持 747 支持定时器、看门狗、bxCAN和I2C的调试 747 调试MCU配置寄存器 748 导言 750 跟踪引脚分配 750 TPUI格式器 752 TPUI帧异步包 752 同步帧包的发送 752 同步模式 752 异步模式 753 TRACECLKIN在STM32F10xxx内部的连接 753 TPIU寄存器 753 配置的例子 754 29.16 MCU调试模块(MCUDBG) 747 29.17 TPIU (跟踪端口接口单元 Trace Port Interface Unit) 750 29.18 DBG寄存器地址映象 754

23/754

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。[www.61k.com)请读者随时注意在ST网站下载更新版本

stm32 STM32中文参考手册

stm32 STM32中文参考手册

存储器和总线架构 STM32F10xxx参考手册 1

1.1 文中的缩写 寄存器描述表中使用的缩写列表

在对寄存器的描述中使用了下列缩写: read / write (rw)

read-only (r)

write-only (w)

read/clear (rc_w1)

read / clear (rc_w0)

read / clear by read (rc_r)

read / set (rs)

read-only write trigger (rt_w)

toggle (t)

Reserved(Res.) 软件能读写此位。(www.61k.com] 软件只能读此位。 软件只能写此位,读此位将返回复位值。 软件可以读此位,也可以通过写’1’清除此位,写’0’对此位无影响。 软件可以读此位,也可以通过写’0’清除此位,写’1’对此位无影响。 软件可以读此位;读此位将自动地清除它为’0’,写’0’对此位无影响。 软件可以读也可以设置此位,写’0’对此位无影响。 软件可以读此位;写’0’或’1’触发一个事件但对此位数值没有影响。

stm32 STM32中文参考手册

扩展:stm32中文参考手册 pdf / stm32中文参考手册 v10 / stm32的datebase

软件只能通过写’1’来翻转此位,写’0’对此位无影响。 保留位,必须保持默认值不变

1.2 术语表

● 小容量产品是指闪存存储器容量在16K至32K字节之间的STM32F101xx、STM32F102xx和

STM32F103xx微控制器。

● 中容量产品是指闪存存储器容量在64K至128K字节之间的STM32F101xx、STM32F102xx

和STM32F103xx微控制器。

● 大容量产品是指闪存存储器容量在256K至512K字节之间的STM32F101xx和STM32F103xx

微控制器。

● 互联型产品是STM32F105xx和STM32F107xx微控制器。

1.3 可用的外设

有关STM32微控制器系列全部型号中,某外设存在与否及其数目,请查阅相应的小容量、中容量或者大容量STM32F101xx和STM32F103xx以及小容量和中容量STM32F102xx的数据手册,以及STM32F105xx/STM32F107xx数据手册。

24/754

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。请读者随时注意在ST网站下载更新版本

stm32 STM32中文参考手册

存储器和总线架构

stm32 STM32中文参考手册

stm32 STM32中文参考手册

stm32 STM32中文参考手册

stm32 STM32中文参考手册

2 系统构架 2.1

在小容量、中容量和 大容量产品中,主系统由以下部分构成:

● 四个驱动单元:

─ Cortex?-M3内核DCode总线(D-bus),和系统总线(S-bus)

─ 通用DMA1和通用DMA2

● 四个被动单元 ─ 内部SRAM

─ 内部闪存存储器

─的桥(AHB2APBx),它连接所有的APB设备

这些都是通过一个多级的AHB总线构架相互连接的,如下图图1所示:

图1 系统结构

在互联型产品中,主系统由以下部分构成:

● 五个驱动单元:

─ Cortex?-M3内核DCode总线(D-bus),和系统总线(S-bus)

─ 通用DMA1和通用DMA2

─ 以太网DMA

● 三个被动单元

─ 内部SRAM

─ 内部闪存存储器

─ AHB到APB的桥(AHB2APBx),它连接所有的APB设备

这些都是通过一个多级的AHB总线构架相互连接的,如图2所示:

25/754

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。(www.61k.com)请读者随时注意在ST网站下载更新版本

stm32 STM32中文参考手册

存储器和总线架构 STM32F10xxx参考手册

图2 互联型产品的系统结构

stm32 STM32中文参考手册

stm32 STM32中文参考手册

ICode总线

该总线将Cortex?-M3内核的指令总线与闪存指令接口相连接。(www.61k.com]指令预取在此总线上完成。

DCode总线

该总线将Cortex?-M3内核的DCode总线与闪存存储器的数据接口相连接(常量加载和调试访问)。

系统总线

此总线连接Cortex?-M3内核的系统总线(外设总线)到总线矩阵,总线矩阵协调着内核和DMA间的访问。

DMA总线

此总线将DMA的AHB主控接口与总线矩阵相联,总线矩阵协调着CPU的DCode和DMA到 SRAM、闪存和外设的访问。

总线矩阵

总线矩阵协调内核系统总线和DMA主控总线之间的访问仲裁,仲裁利用轮换算法。在互联型产品中,总线矩阵包含5个驱动部件(CPU的DCode、系统总线、以太网DMA、DMA1总线和DMA2总线)和3个从部件(闪存存储器接口(FLITF)、SRAM和AHB2APB桥)。在其它产品中总线矩阵包含4个驱动部件(CPU的DCode、系统总线、DMA1总线和DMA2总线)和4个被动部件(闪存存储器接口(FLITF)、SRAM、FSMC和AHB2APB桥)。

AHB外设通过总线矩阵与系统总线相连,允许DMA访问。

26/754

stm32 STM32中文参考手册

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。请读者随时注意在ST网站下载更新版本

stm32 STM32中文参考手册

stm32 STM32中文参考手册

存储器和总线架构 STM32F10xxx参考手册

AHB/APB桥(APB)

两个AHB/APB桥在AHB和2个APB总线间提供同步连接。(www.61k.com]APB1操作速度限于36MHz,APB2操作于全速(最高72MHz)。

有关连接到每个桥的不同外设的地址映射请参考表1。在每一次复位以后,所有除SRAM和FLITF以外的外设都被关闭,在使用一个外设之前,必须设置寄存器RCC_AHBENR来打开该外设的时钟。

注意: 当对APB寄存器进行8位或者16位访问时,该访问会被自动转换成32位的访问:桥会自动将8位

或者32位的数据扩展以配合32位的向量。

2.2 存储器组织

stm32 STM32中文参考手册

4GB的线性地址空间内。 数据字节以小端格式存放在存储器中。一个字里的最低地址字节被认为是该字的最低有效字节,而最高地址字节是最高有效字节。

外设寄存器的映像请参考相关章节。

可访问的存储器空间被分成8个主要块,每个块为512MB。

其他所有没有分配给片上存储器和外设的存储器空间都是保留的地址空间,请参考相应器件的数据手册中的存储器映像图。

27/754

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。请读者随时注意在ST网站下载更新版本

扩展:stm32中文参考手册 pdf / stm32中文参考手册 v10 / stm32的datebase

stm32 STM32中文参考手册

存储器和总线架构 STM32F10xxx参考手册

2.3 存储器映像

请参考相应器件的数据手册中的存储器映像图。[www.61k.com]表1列出了所用STM32F10xxx中内置外设的起

始地址。 表1

寄存器组起始地址

stm32 STM32中文参考手册

外设

USB OTG 全速 保留 以太网 保留 CRC

闪存存储器接口 保留

复位和时钟控制(RCC) 保留 DMA2 DMA1 保留 SDIO 保留 ADC3 USART1 TIM8定时器 SPI1 TIM1定时器 ADC2 ADC1 GPIO端口G GPIO端口F GPIO端口E GPIO端口D GPIO端口C GPIO端口B GPIO端口A EXTI AFIO 保留 DAC

电源控制(PWR) 后备寄存器(BKP) bxCAN2 bxCAN1

USB/CAN共享的512字节SRAM

APB1APB2AHBAHB总线

寄存器映像 参见26.14.6节

参见27.8.5节

参见3.4.4节

参见6.3.11节

参见10.4.7节 参见10.4.7节

参见20.9.16节

参见11.12.15节 参见25.6.8节 参见13.4.21节 参见23.5节 参见13.4.21节 参见11.12.15节 参见11.12.15节 参见8.5节 参见8.5节 参见8.5节 参见8.5节 参见8.5节 参见8.5节 参见8.5节 参见9.3.7节 参见8.5节

参见12.5.14节 参见4.4.3节 参见5.4.5节 参见22.9.5节 参见22.9.5节

起始地址

0x5000 0000 – 0x5003 FFFF 0x4003 0000 – 0x4FFF FFFF 0x4002 8000 – 0x4002 9FFF 0x4002 3400 - 0x4002 3FFF 0x4002 3000 - 0x4002 33FF 0x4002 2000 - 0x4002 23FF 0x4002 1400 - 0x4002 1FFF 0x4002 1000 - 0x4002 13FF 0x4002 0800 - 0x4002 0FFF 0x4002 0400 - 0x4002 07FF 0x4002 0000 - 0x4002 03FF 0x4001 8400 - 0x4001 7FFF 0x4001 8000 - 0x4001 83FF 0x4001 4000 - 0x4001 7FFF 0x4001 3C00 - 0x4001 3FFF 0x4001 3800 - 0x4001 3BFF 0x4001 3400 - 0x4001 37FF 0x4001 3000 - 0x4001 33FF 0x4001 2C00 - 0x4001 2FFF 0x4001 2800 - 0x4001 2BFF 0x4001 2400 - 0x4001 27FF 0x4001 2000 - 0x4001 23FF 0x4001 2000 - 0x4001 23FF 0x4001 1800 - 0x4001 1BFF 0x4001 1400 - 0x4001 17FF 0x4001 1000 - 0x4001 13FF 0X4001 0C00 - 0x4001 0FFF 0x4001 0800 - 0x4001 0BFF 0x4001 0400 - 0x4001 07FF 0x4001 0000 - 0x4001 03FF 0x4000 7800 - 0x4000FFFF 0x4000 7400 - 0x4000 77FF 0x4000 7000 - 0x4000 73FF 0x4000 6C00 - 0x4000 6FFF 0x4000 6800 - 0x4000 6BFF 0x4000 6400 - 0x4000 67FF 0x4000 6000(1) - 0x4000 63FF

28/754

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。请读者随时注意在ST网站下载更新版本

stm32 STM32中文参考手册

存储器和总线架构 STM32F10xxx参考手册

stm32 STM32中文参考手册

0x4000 5C00 - 0x4000 5FFF 0x4000 5800 - 0x4000 5BFF 0x4000 5400 - 0x4000 57FF 0x4000 5000 - 0x4000 53FF 0x4000 4C00 - 0x4000 4FFF 0x4000 4800 - 0x4000 4BFF 0x4000 4400 - 0x4000 47FF 0x4000 4000 - 0x4000 3FFF 0x4000 3C00 - 0x4000 3FFF 0x4000 3800 - 0x4000 3BFF 0x4000 3400 - 0x4000 37FF 0x4000 3000 - 0x4000 33FF 0x4000 2C00 - 0x4000 2FFF 0x4000 2800 - 0x4000 2BFF 0x4000 1800 - 0x4000 27FF 0x4000 1400 - 0x4000 17FF 0x4000 1000 - 0x4000 13FF 0x4000 0C00 - 0x4000 0FFF 0x4000 0800 - 0x4000 0BFF 0x4000 0400 - 0x4000 07FF 0x4000 0000 - 0x4000 03FF

USB全速设备寄存器 I2C2 I2C1 UART5 UART4 USART3 USART2 保留 SPI3/I2S3 SPI2/I2S3 保留

独立看门狗(IWDG) 窗口看门狗(WWDG) RTC 保留 TIM7定时器 TIM6定时器 TIM5定时器 TIM4定时器 TIM3定时器 TIM2定时器

参见21.5.4节 参见24.6.10节 参见24.6.10节 参见25.6.8节 参见25.6.8节 参见25.6.8节 参见25.6.8节

参见23.5节 参见23.5节

参见17.4.5节 参见18.6.4节 参见16.4.7节

参见15.4.9节 参见15.4.9节 参见14.4.19节 参见14.4.19节 参见14.4.19节 参见14.4.19节

1.只在小容量、中容量和大容量的产品中才有这个共享的SRAM区域,互联型产品中没有这个区域。(www.61k.com)

2.3.1 SRAM

内置64K字节的静态(16位)或全字(32位)访问。

SRAM。

2.3.2 位段

Cortex?-M3存储器映像包括两个位段(bit-band)区。这两个位段区将别名存储器区中的每个字映射到位段存储器区的一个位,在别名存储区写入一个字具有对位段区的目标位执行读-改-写操作的相同效果。

在STM32F10xxx里,外设寄存器和SRAM都被映射到一个位段区里,这允许执行单一的位段的写和读操作。

下面的映射公式给出了别名区中的每个字是如何对应位带区的相应位的: bit_word_addr = bit_band_base + (byte_offset×32) + (bit_number×4) 其中:

bit_word_addr是别名存储器区中字的地址,它映射到某个目标位。 bit_band_base是别名区的起始地址。

byte_offset是包含目标位的字节在位段里的序号 bit_number是目标位所在位置(0-31)

例子:

下面的例子说明如何映射别名区中SRAM地址为0x20000300的字节中的位2: 0x22006008 = 0x22000000 + (0x300×32) + (2×4).

对0x22006008地址的写操作与对SRAM中地址0x20000300字节的位2执行读-改-写操作有着相同的效果。

29/754

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。请读者随时注意在ST网站下载更新版本

stm32 STM32中文参考手册

存储器和总线架构 STM32F10xxx参考手册

读0x22006008地址返回SRAM中地址0x20000300字节的位2的值(0x01 或 0x00)。(www.61k.com) 请参考《Cortex?-M3技术参考手册》以了解更多有关位段的信息。

2.3.3 嵌入式闪存

高性能的闪存模块有以下的主要特性:

扩展:stm32中文参考手册 pdf / stm32中文参考手册 v10 / stm32的datebase

● 高达512K字节闪存存储器结构:闪存存储器有主存储块和信息块组成:

─ 主存储块容量:

小容量产品主存储块最大为4K×64位,每个存储块划分为32个1K字节的页(见表2)。 中容量产品主存储块最大为16K×64位,每个存储块划分为128个1K字节的页(见表3)。 大容量产品主存储块最大为64K×64位,每个存储块划分为256个2K字节的页(见表4)。 互联型产品主存储块最大为32K×64位,每个存储块划分为128个2K字节的页(见表5)。 ─ 信息块容量:

互联型产品有2360×64位(见表5)。

其它产品有258×64位(见表2、表3、表4)。 闪存存储器接口的特性为:

● 带预取缓冲器的读接口(每字为2×64位) ● 选择字节加载器 ● 闪存编程/擦除操作 ● 访问/写保护 表2

模块

闪存模块的组织(小容量产品)

名称 页0 页1 页2

地址

0x0800 0000 - 0x0800 03FF 0x0800 0400 - 0x0800 07FF 0x0800 0800 - 0x0800 0BFF 0x0800 0C00 - 0x0800 0FFF 0x0800 1000 - 0x0800 13FF … …

0x0800 7C00 - 0x0800 7FFF 0x1FFF F000 - 0x1FFF F7FF 0x1FFF F800 - 0x1FFF F80F 0x4002 2000 - 0x4002 2003 0x4002 2004 - 0x4002 2007 0x4002 2008 - 0x4002 200B 0x4002 200C - 0x4002 200F 0x4002 2010 - 0x4002 2013 0x4002 2014 - 0x4002 2017 0x4002 2018 - 0x4002 201B 0x4002 201C - 0x4002 201F 0x4002 2020 - 0x4002 2023

大小(字节) 1K 1K 1K 1K 1K … … 1K 2K 16 4 4 4 4 4 4 4 4 4

主存储块

页3 页4 … … 页31 系统存储器 选择字节 FLASH_ACR FALSH_KEYR FLASH_OPTKEYR FLASH_SR FLASH_CR FLASH_AR 保留 FLASH_OBR FLASH_WRPR

信息块

闪存存储器 接口寄存器

30/754

stm32 STM32中文参考手册

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。请读者随时注意在ST网站下载更新版本

stm32 STM32中文参考手册

存储器和总线架构 STM32F10xxx参考手册

表3

模块

闪存模块的组织(中容量产品)

stm32 STM32中文参考手册

名称 页0 页1 页2

地址

0x0800 0000 - 0x0800 03FF 0x0800 0400 - 0x0800 07FF 0x0800 0800 - 0x0800 0BFF 0x0800 0C00 - 0x0800 0FFF 0x0800 1000 - 0x0800 13FF …

0x0801 FC00 - 0x0801 FFFF 0x1FFF F000 - 0x1FFF F7FF 0x1FFF F800 - 0x1FFF F80F 0x4002 2000 - 0x4002 2003 0x4002 2004 - 0x4002 2007 0x4002 2008 - 0x4002 200B 0x4002 200C - 0x4002 200F 0x4002 2010 - 0x4002 2013 0x4002 2014 - 0x4002 2017 0x4002 2018 - 0x4002 201B 0x4002 201C - 0x4002 201F 0x4002 2020 - 0x4002 2023

大小(字节) 1K 1K 1K 1K 1K … … 1K 2K 16 4 4 4 4 4 4 4 4 4

主存储块

页3 页4 … … 页127 系统存储器 选择字节 FLASH_ACR FALSH_KEYR FLASH_OPTKEYR FLASH_SR FLASH_CR FLASH_AR 保留 FLASH_OBR FLASH_WRPR

信息块

闪存存储器 接口寄存器

表4

模块

闪存模块的组织(大容量产品)

名称 页0 页1 页2

地址

0x0800 0000 - 0x0800 07FF 0x0800 0800 - 0x0800 0FFF 0x0800 1000 - 0x0800 17FF 0x0800 1800 - 0x0800 1FFF … …

0x0807 F800 - 0x0807 FFFF 0x1FFF F000 - 0x1FFF F7FF 0x1FFF F800 - 0x1FFF F80F 0x4002 2000 - 0x4002 2003 0x4002 2004 - 0x4002 2007 0x4002 2008 - 0x4002 200B 0x4002 200C - 0x4002 200F 0x4002 2010 - 0x4002 2013 0x4002 2014 - 0x4002 2017 0x4002 2018 - 0x4002 201B 0x4002 201C - 0x4002 201F 0x4002 2020 - 0x4002 2023

大小(字节) 2K 2K 2K 2K … … 2K 2K 16 4 4 4 4 4 4 4 4 4

主存储块

页3 … … 页255 系统存储器 选择字节 FLASH_ACR FALSH_KEYR FLASH_OPTKEYR FLASH_SR FLASH_CR FLASH_AR 保留 FLASH_OBR FLASH_WRPR

信息块

闪存存储器 接口寄存器

31/754

参照2009年12月 RM0008 Reference Manual 英文第10版

本译文仅供参考,如有翻译错误,请以英文原稿为准。(www.61k.com)请读者随时注意在ST网站下载更新版本

stm32 STM32中文参考手册

[www.61k.com)

扩展:stm32中文参考手册 pdf / stm32中文参考手册 v10 / stm32的datebase

本文标题:VBScript程序员参考手册-OpenCV参考手册
本文地址: http://www.61k.com/1060714.html

61阅读| 精彩专题| 最新文章| 热门文章| 苏ICP备13036349号-1