61阅读

三角形边长计算公式-三角形计算公式汇总

发布时间:2018-05-10 所属栏目:直角三角形边长公式

一 : 三角形计算公式汇总

在△ABC中,设AB=c,AC=b,CB=a,s=(a+b+c)/2 ,r为内切圆半径,R为外接圆半径,“√”为根号.
1.面积公式S=(1/2)a×ha
S=(1/2)ab×sinC
S=rs
S=abc/(4R)
S=2R ×sinAsinBsinC
S=s(s-a)×tan(A/2)
S=√[(s-a)(s-b)(s-c)s] (海伦公式)
S=s ×tan(A/2)tan(B/2)tan(C/2)
S=(a -b )sinAsinB/[2sin(A-B)]
2.中线.a边中线长Ma=(1/2)×√(2b +2c -a )
=(1/2)×√(b +c +2bc×cosA)
3.高.a边高长ha=c×sinB=b×sinC
ha=a×sinBsinC/sinA
ha=√[b -(a +b -c ) /(2a) ]
4.角平分线.a边角平分线长la=2bc×cos(A/2)/(b+c)
la=√{bc[(b+c) -a ]}/(b+c)
5.内切圆,外接圆半径:
r=S/s=4R×sin(A/2)sin(B/2)sin(C/2)
r=s×tan(A/2)tan(B/2)tan(C/2)
R=a/(2sinA)=abc/(4s)=abc/[2r(a+b+c)]
6.同角三角函数间的关系:
sinα×cscα=1
cosα×secα=1
tanα×cotα=1
tanα=sinα/cosα,cotα=cosα/sinα
(sinα) +(cosα) =1
1+(tanα) =(secα)
1+(cotα) =(cscα)
7.正弦定理:
a/sinA=b/sinB=c/sinC=2R
8.余弦定理:
a =b +c -2bc cosA
b =a +c -2ac cosB
c =a +b -2ab cosC
9.倍角公式:
sin(2α)=2sinαcosα
cos(2α)=(cosα) -1=1-2(sinα)
tan(2α)=2tanα/[1-(tanα) ]
sin(3α)=3sinα-4(sinα)^3
cos(3α)=4(cosα)^3-3cosα
希望可以帮到你、

二 : 各种三角形边长的计算公式

各种三角形边长的计算公式

解三角形

解直角三角形(斜三角形特殊情况):

勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”) a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。 勾股弦数是指一组能使勾股定理关系成立的三个正整数。比如:3,4,

5。他们分别是3,4和5的倍数。 常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等.

解斜三角形:

在三角形ABC中,角A,B,C的对边分别为a,b,c. 则有 (1)正弦定理 a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径) (2)余弦定理 a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 注:勾股定理其实是余弦定理的一种特殊情况。 (3)余弦定理变形公式 cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab

斜三角形的解法:

已知条件 定理应用 一般解法

一边和两角 (如a、B、C) 正弦定理 由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时 有一解。

两边和夹角 (如a、b、c) 余弦定理 由余弦定理求第三边c,由正弦定理求出小边所对的角,再 由A+B+C=180˙求出另一角,在有

解时有一解。

三边 (如a、b、c) 余弦定理 由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解。

两边和其中一边的对角 (如a、b、A) 正弦定理 由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正 弦定理求出C边,可有两解、一解或无解。

勾股定理(毕达哥拉斯定理)

内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。 几何语言:若△ABC满足∠ABC=90°,则AB2+BC2=AC2 勾股定理的逆定理也成立,即两条边长的平方之和等于第三边长的平方,则这个三角形是直角三角形 几何语言:若△ABC满足,则∠ABC=90°。

[3]射影定理(欧几里得定理)

内容:在任何一个直角三角形中,作出斜边上的高,则斜边上的高的平方等于高所在斜边上的点到不是两直角边垂足的另外两顶点的线段长度的乘积。 几何语言:若△ABC满足∠ABC=90°,作BD⊥AC,则BD2=AD×DC 射影定理的拓展:若△ABC满足∠ABC=90°,作BD⊥AC, (1)AB2=BD·BC (2)AC2;=CD·BC

(3)ABXAC=BCXAD

正弦定理

内容:在任何一个三角形中,每个角的正弦与对边之比等于三角形面积的两倍与三边边长和的乘积之比 几何语言:在△ABC中,sinA/a=sinB/b=sinC/c=2S三角形/abc 结合三角形面积公式,可以变形为a/sinA=b/sinB=c/sinC=2R(R是外接圆半径)

余弦定理

内容:在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边的2倍乘以它们夹角的余弦 几何语言:在△ABC中,a2=b2+c2-2bc×cosA 此定理可以变形为:cosA=(b2+c2-a2)÷2bc

三 : 各种三角形边长的计算公式

各种三角形边长的计算公式

解三角形

解直角三角形(斜三角形特殊情况):

勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”) a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。 勾股弦数是指一组能使勾股定理关系成立的三个正整数。比如:3,4,

5。他们分别是3,4和5的倍数。 常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等.

解斜三角形:

在三角形ABC中,角A,B,C的对边分别为a,b,c. 则有 (1)正弦定理 a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径) (2)余弦定理 a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 注:勾股定理其实是余弦定理的一种特殊情况。 (3)余弦定理变形公式 cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab

斜三角形的解法:

已知条件 定理应用 一般解法

一边和两角 (如a、B、C) 正弦定理 由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时 有一解。

两边和夹角 (如a、b、c) 余弦定理 由余弦定理求第三边c,由正弦定理求出小边所对的角,再 由A+B+C=180˙求出另一角,在有

解时有一解。

三边 (如a、b、c) 余弦定理 由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解。

两边和其中一边的对角 (如a、b、A) 正弦定理 由正弦定理求出角B,由A+B+C=180˙求出角C,在利用正 弦定理求出C边,可有两解、一解或无解。

勾股定理(毕达哥拉斯定理)

内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。 几何语言:若△ABC满足∠ABC=90°,则AB2+BC2=AC2 勾股定理的逆定理也成立,即两条边长的平方之和等于第三边长的平方,则这个三角形是直角三角形 几何语言:若△ABC满足,则∠ABC=90°。

[3]射影定理(欧几里得定理)

内容:在任何一个直角三角形中,作出斜边上的高,则斜边上的高的平方等于高所在斜边上的点到不是两直角边垂足的另外两顶点的线段长度的乘积。 几何语言:若△ABC满足∠ABC=90°,作BD⊥AC,则BD2=AD×DC 射影定理的拓展:若△ABC满足∠ABC=90°,作BD⊥AC, (1)AB2=BD·BC (2)AC2;=CD·BC

(3)ABXAC=BCXAD

正弦定理

内容:在任何一个三角形中,每个角的正弦与对边之比等于三角形面积的两倍与三边边长和的乘积之比 几何语言:在△ABC中,sinA/a=sinB/b=sinC/c=2S三角形/abc 结合三角形面积公式,可以变形为a/sinA=b/sinB=c/sinC=2R(R是外接圆半径)

余弦定理

内容:在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边的2倍乘以它们夹角的余弦 几何语言:在△ABC中,a2=b2+c2-2bc×cosA 此定理可以变形为:cosA=(b2+c2-a2)÷2bc

本文标题:三角形边长计算公式-三角形计算公式汇总
本文地址: http://www.61k.com/1215440.html

61阅读| 精彩专题| 最新文章| 热门文章| 苏ICP备13036349号-1