一 : 放射性同位素与射线装置安全和防护条例
《放射性同位素与射线装置安全和防护条例》已经2005年8月31日国务院第104次常务会议通过,现予公布,自2005年12月1日起施行。
“www.61k.com。总 理 温家宝
二○○五年九月十四日
放射性同位素与射线装置安全和防护条例
第一章 总 则
第一条 为了加强对放射性同位素、射线装置安全和防护的监督管理,促进放射性同位素、射线装置的安全应用,保障人体健康,保护环境,制定本条例。
第二条 在中华人民共和国境内生产、销售、使用放射性同位素和射线装置,以及转让、进出口放射性同位素的,应当遵守本条例。
本条例所称放射性同位素包括放射源和非密封放射性物质。
第三条 国务院环境保护主管部门对全国放射性同位素、射线装置的安全和防护工作实施统一监督管理。
国务院公安、卫生等部门按照职责分工和本条例的规定,对有关放射性同位素、射线装置的安全和防护工作实施监督管理。
县级以上地方人民政府环境保护主管部门和其他有关部门,按照职责分工和本条例的规定,对本行政区域内放射性同位素、射线装置的安全和防护工作实施监督管理。
第四条 国家对放射源和射线装置实行分类管理。根据放射源、射线装置对人体健康和环境的潜在危害程度,从高到低将放射源分为Ⅰ类、Ⅱ类、Ⅲ类、Ⅳ类、Ⅴ类,具体分类办法由国务院环境保护主管部门制定;将射线装置分为Ⅰ类、Ⅱ类、Ⅲ类,具体分类办法由国务院环境保护主管部门商国务院卫生主管部门制定。
第二章 许可和备案
第五条 生产、销售、使用放射性同位素和射线装置的单位,应当依照本章规定取得许可证。
第六条 生产放射性同位素、销售和使用Ⅰ类放射源、销售和使用Ⅰ类射线装置的单位的许可证,由国务院环境保护主管部门审批颁发。
前款规定之外的单位的许可证,由省、自治区、直辖市人民政府环境保护主管部门审批颁发。
国务院环境保护主管部门向生产放射性同位素的单位颁发许可证前,应当将申请材料印送其行业主管部门征求意见。
环境保护主管部门应当将审批颁发许可证的情况通报同级公安部门、卫生主管部门。
第七条 生产、销售、使用放射性同位素和射线装置的单位申请领取许可证,应当具备下列条件:
(一)有与所从事的生产、销售、使用活动规模相适应的,具备相应专业知识和防护知识及健康条件的专业技术人员;
(二)有符合国家环境保护标准、职业卫生标准和安全防护要求的场所、设施和设备;
(三)有专门的安全和防护管理机构或者专职、兼职安全和防护管理人员,并配备必要的防护用品和监测仪器;
(四)有健全的安全和防护管理规章制度、辐射事故应急措施;
(五)产生放射性废气、废液、固体废物的,具有确保放射性废气、废液、固体废物达标排放的处理能力或者可行的处理方案。
第八条 生产、销售、使用放射性同位素和射线装置的单位,应当事先向有审批权的环境保护主管部门提出许可申请,并提交符合本条例第七条规定条件的证明材料。
使用放射性同位素和射线装置进行放射诊疗的医疗卫生机构,还应当获得放射源诊疗技术和医用辐射机构许可。
第九条 环境保护主管部门应当自受理申请之日起20个工作日内完成审查,符合条件的,颁发许可证,并予以公告;不符合条件的,书面通知申请单位并说明理由。
第十条 许可证包括下列主要内容:
(一)单位的名称、地址、法定代表人;
(二)所从事活动的种类和范围;
(三)有效期限;
(四)发证日期和证书编号。
第十一条 持证单位变更单位名称、地址、法定代表人的,应当自变更登记之日起20日内,向原发证机关申请办理许可证变更手续。
第十二条 有下列情形之一的,持证单位应当按照原申请程序,重新申请领取许可证:
(一)改变所从事活动的种类或者范围的;
(二)新建或者改建、扩建生产、销售、使用设施或者场所的。
第十三条 许可证有效期为5年。有效期届满,需要延续的,持证单位应当于许可证有效期届满30日前,向原发证机关提出延续申请。原发证机关应当自受理延续申请之日起,在许可证有效期届满前完成审查,符合条件的,予以延续;不符合条件的,书面通知申请单位并说明理由。
第十四条 持证单位部分终止或者全部终止生产、销售、使用放射性同位素和射线装置活动的,应当向原发证机关提出部分变更或者注销许可证申请,由原发证机关核查合格后,予以变更或者注销许可证。
第十五条 禁止无许可证或者不按照许可证规定的种类和范围从事放射性同位素和射线装置的生产、销售、使用活动。
禁止伪造、变造、转让许可证。
第十六条 国务院对外贸易主管部门会同国务院环境保护主管部门、海关总署、国务院质量监督检验检疫部门和生产放射性同位素的单位的行业主管部门制定并公布限制进出口放射性同位素目录和禁止进出口放射性同位素目录。
进口列入限制进出口目录的放射性同位素,应当在国务院环境保护主管部门审查批准后,由国务院对外贸易主管部门依据国家对外贸易的有关规定签发进口许可证。进口限制进出口目录和禁止进出口目录之外的放射性同位素,依据国家对外贸易的有关规定办理进口手续。
第十七条 申请进口列入限制进出口目录的放射性同位素,应当符合下列要求:
(一)进口单位已经取得与所从事活动相符的许可证;
(二)进口单位具有进口放射性同位素使用期满后的处理方案,其中,进口Ⅰ类、Ⅱ类、Ⅲ类放射源的,应当具有原出口方负责回收的承诺文件;
(三)进口的放射源应当有明确标号和必要说明文件,其中,Ⅰ类、Ⅱ类、Ⅲ类放射源的标号应当刻制在放射源本体或者密封包壳体上,Ⅳ类、Ⅴ类放射源的标号应当记录在相应说明文件中;
(四)将进口的放射性同位素销售给其他单位使用的,还应当具有与使用单位签订的书面协议以及使用单位取得的许可证复印件。
第十八条 进口列入限制进出口目录的放射性同位素的单位,应当向国务院环境保护主管部门提出进口申请,并提交符合本条例第十七条规定要求的证明材料。
国务院环境保护主管部门应当自受理申请之日起10个工作日内完成审查,符合条件的,予以批准;不符合条件的,书面通知申请单位并说明理由。
海关验凭放射性同位素进口许可证办理有关进口手续。进口放射性同位素的包装材料依法需要实施检疫的,依照国家有关检疫法律、法规的规定执行。
对进口的放射源,国务院环境保护主管部门还应当同时确定与其标号相对应的放射源编码。
第十九条 申请转让放射性同位素,应当符合下列要求:
(一)转出、转入单位持有与所从事活动相符的许可证;
(二)转入单位具有放射性同位素使用期满后的处理方案;
(三)转让双方已经签订书面转让协议。
第二十条 转让放射性同位素,由转入单位向其所在地省、自治区、直辖市人民政府环境保护主管部门提出申请,并提交符合本条例第十九条规定要求的证明材料。
省、自治区、直辖市人民政府环境保护主管部门应当自受理申请之日起15个工作日内完成审查,符合条件的,予以批准;不符合条件的,书面通知申请单位并说明理由。
第二十一条 放射性同位素的转出、转入单位应当在转让活动完成之日起20日内,分别向其所在地省、自治区、直辖市人民政府环境保护主管部门备案。
第二十二条 生产放射性同位素的单位,应当建立放射性同位素产品台账,并按照国务院环境保护主管部门制定的编码规则,对生产的放射源统一编码。放射性同位素产品台账和放射源编码清单应当报国务院环境保护主管部门备案。
生产的放射源应当有明确标号和必要说明文件。其中,Ⅰ类、Ⅱ类、Ⅲ类放射源的标号应当刻制在放射源本体或者密封包壳体上,Ⅳ类、Ⅴ类放射源的标号应当记录在相应说明文件中。
国务院环境保护主管部门负责建立放射性同位素备案信息管理系统,与有关部门实行信息共享。
未列入产品台账的放射性同位素和未编码的放射源,不得出厂和销售。
第二十三条 持有放射源的单位将废旧放射源交回生产单位、返回原出口方或者送交放射性废物集中贮存单位贮存的,应当在该活动完成之日起20日内向其所在地省、自治区、直辖市人民政府环境保护主管部门备案。
第二十四条 本条例施行前生产和进口的放射性同位素,由放射性同位素持有单位在本条例施行之日起6个月内,到其所在地省、自治区、直辖市人民政府环境保护主管部门办理备案手续,省、自治区、直辖市人民政府环境保护主管部门应当对放射源进行统一编码。
第二十五条 使用放射性同位素的单位需要将放射性同位素转移到外省、自治区、直辖市使用的,应当持许可证复印件向使用地省、自治区、直辖市人民政府环境保护主管部门备案,并接受当地环境保护主管部门的监督管理。
第二十六条 出口列入限制进出口目录的放射性同位素,应当提供进口方可以合法持有放射性同位素的证明材料,并由国务院环境保护主管部门依照有关法律和我国缔结或者参加的国际条约、协定的规定,办理有关手续。
出口放射性同位素应当遵守国家对外贸易的有关规定。
第三章 安全和防护
第二十七条 生产、销售、使用放射性同位素和射线装置的单位,应当对本单位的放射性同位素、射线装置的安全和防护工作负责,并依法对其造成的放射性危害承担责任。
生产放射性同位素的单位的行业主管部门,应当加强对生产单位安全和防护工作的管理,并定期对其执行法律、法规和国家标准的情况进行监督检查。
第二十八条 生产、销售、使用放射性同位素和射线装置的单位,应当对直接从事生产、销售、使用活动的工作人员进行安全和防护知识教育培训,并进行考核;考核不合格的,不得上岗。
辐射安全关键岗位应当由注册核安全工程师担任。辐射安全关键岗位名录由国务院环境保护主管部门商国务院有关部门制定并公布。
第二十九条 生产、销售、使用放射性同位素和射线装置的单位,应当严格按照国家关于个人剂量监测和健康管理的规定,对直接从事生产、销售、使用活动的工作人员进行个人剂量监测和职业健康检查,建立个人剂量档案和职业健康监护档案。
第三十条 生产、销售、使用放射性同位素和射线装置的单位,应当对本单位的放射性同位素、射线装置的安全和防护状况进行年度评估。发现安全隐患的,应当立即进行整改。
第三十一条 生产、销售、使用放射性同位素和射线装置的单位需要终止的,应当事先对本单位的放射性同位素和放射性废物进行清理登记,作出妥善处理,不得留有安全隐患。生产、销售、使用放射性同位素和射线装置的单位发生变更的,由变更后的单位承担处理责任。变更前当事人对此另有约定的,从其约定;但是,约定中不得免除当事人的处理义务。
在本条例施行前已经终止的生产、销售、使用放射性同位素和射线装置的单位,其未安全处理的废旧放射源和放射性废物,由所在地省、自治区、直辖市人民政府环境保护主管部门提出处理方案,及时进行处理。所需经费由省级以上人民政府承担。
第三十二条 生产、进口放射源的单位销售Ⅰ类、Ⅱ类、Ⅲ类放射源给其他单位使用的,应当与使用放射源的单位签订废旧放射源返回协议;使用放射源的单位应当按照废旧放射源返回协议规定将废旧放射源交回生产单位或者返回原出口方。确实无法交回生产单位或者返回原出口方的,送交有相应资质的放射性废物集中贮存单位贮存。
使用放射源的单位应当按照国务院环境保护主管部门的规定,将Ⅳ类、Ⅴ类废旧放射源进行包装整备后送交有相应资质的放射性废物集中贮存单位贮存。
第三十三条 使用Ⅰ类、Ⅱ类、Ⅲ类放射源的场所和生产放射性同位素的场所,以及终结运行后产生放射性污染的射线装置,应当依法实施退役。
第三十四条 生产、销售、使用、贮存放射性同位素和射线装置的场所,应当按照国家有关规定设置明显的放射性标志,其入口处应当按照国家有关安全和防护标准的要求,设置安全和防护设施以及必要的防护安全联锁、报警装置或者工作信号。射线装置的生产调试和使用场所,应当具有防止误操作、防止工作人员和公众受到意外照射的安全措施。
放射性同位素的包装容器、含放射性同位素的设备和射线装置,应当设置明显的放射性标识和中文警示说明;放射源上能够设置放射性标识的,应当一并设置。运输放射性同位素和含放射源的射线装置的工具,应当按照国家有关规定设置明显的放射性标志或者显示危险信号。
第三十五条 放射性同位素应当单独存放,不得与易燃、易爆、腐蚀性物品等一起存放,并指定专人负责保管。贮存、领取、使用、归还放射性同位素时,应当进行登记、检查,做到账物相符。对放射性同位素贮存场所应当采取防火、防水、防盗、防丢失、防破坏、防射线泄漏的安全措施。
对放射源还应当根据其潜在危害的大小,建立相应的多层防护和安全措施,并对可移动的放射源定期进行盘存,确保其处于指定位置,具有可靠的安全保障。
第三十六条 在室外、野外使用放射性同位素和射线装置的,应当按照国家安全和防护标准的要求划出安全防护区域,设置明显的放射性标志,必要时设专人警戒。
在野外进行放射性同位素示踪试验的,应当经省级以上人民政府环境保护主管部门商同级有关部门批准方可进行。
第三十七条 辐射防护器材、含放射性同位素的设备和射线装置,以及含有放射性物质的产品和伴有产生X射线的电器产品,应当符合辐射防护要求。不合格的产品不得出厂和销售。
第三十八条 使用放射性同位素和射线装置进行放射诊疗的医疗卫生机构,应当依据国务院卫生主管部门有关规定和国家标准,制定与本单位从事的诊疗项目相适应的质量保证方案,遵守质量保证监测规范,按照医疗照射正当化和辐射防护最优化的原则,避免一切不必要的照射,并事先告知患者和受检者辐射对健康的潜在影响。
第三十九条 金属冶炼厂回收冶炼废旧金属时,应当采取必要的监测措施,防止放射性物质熔入产品中。监测中发现问题的,应当及时通知所在地设区的市级以上人民政府环境保护主管部门。
第四章 辐射事故应急处理
第四十条 根据辐射事故的性质、严重程度、可控性和影响范围等因素,从重到轻将辐射事故分为特别重大辐射事故、重大辐射事故、较大辐射事故和一般辐射事故四个等级。
特别重大辐射事故,是指Ⅰ类、Ⅱ类放射源丢失、被盗、失控造成大范围严重辐射污染后果,或者放射性同位素和射线装置失控导致3人以上(含3人)急性死亡。
重大辐射事故,是指Ⅰ类、Ⅱ类放射源丢失、被盗、失控,或者放射性同位素和射线装置失控导致2人以下(含2人)急性死亡或者10人以上(含10人)急性重度放射病、局部器官残疾。
较大辐射事故,是指Ⅲ类放射源丢失、被盗、失控,或者放射性同位素和射线装置失控导致9人以下(含9人)急性重度放射病、局部器官残疾。
一般辐射事故,是指Ⅳ类、Ⅴ类放射源丢失、被盗、失控,或者放射性同位素和射线装置失控导致人员受到超过年剂量限值的照射。
第四十一条 县级以上人民政府环境保护主管部门应当会同同级公安、卫生、财政等部门编制辐射事故应急预案,报本级人民政府批准。辐射事故应急预案应当包括下列内容:
(一)应急机构和职责分工;
(二)应急人员的组织、培训以及应急和救助的装备、资金、物资准备;
(三)辐射事故分级与应急响应措施;
(四)辐射事故调查、报告和处理程序。
生产、销售、使用放射性同位素和射线装置的单位,应当根据可能发生的辐射事故的风险,制定本单位的应急方案,做好应急准备。
第四十二条 发生辐射事故时,生产、销售、使用放射性同位素和射线装置的单位应当立即启动本单位的应急方案,采取应急措施,并立即向当地环境保护主管部门、公安部门、卫生主管部门报告。
环境保护主管部门、公安部门、卫生主管部门接到辐射事故报告后,应当立即派人赶赴现场,进行现场调查,采取有效措施,控制并消除事故影响,同时将辐射事故信息报告本级人民政府和上级人民政府环境保护主管部门、公安部门、卫生主管部门。
县级以上地方人民政府及其有关部门接到辐射事故报告后,应当按照事故分级报告的规定及时将辐射事故信息报告上级人民政府及其有关部门。发生特别重大辐射事故和重大辐射事故后,事故发生地省、自治区、直辖市人民政府和国务院有关部门应当在4小时内报告国务院;特殊情况下,事故发生地人民政府及其有关部门可以直接向国务院报告,并同时报告上级人民政府及其有关部门。
禁止缓报、瞒报、谎报或者漏报辐射事故。
第四十三条 在发生辐射事故或者有证据证明辐射事故可能发生时,县级以上人民政府环境保护主管部门有权采取下列临时控制措施:
(一)责令停止导致或者可能导致辐射事故的作业;
(二)组织控制事故现场。
第四十四条 辐射事故发生后,有关县级以上人民政府应当按照辐射事故的等级,启动并组织实施相应的应急预案。
县级以上人民政府环境保护主管部门、公安部门、卫生主管部门,按照职责分工做好相应的辐射事故应急工作:
(一)环境保护主管部门负责辐射事故的应急响应、调查处理和定性定级工作,协助公安部门监控追缴丢失、被盗的放射源;
(二)公安部门负责丢失、被盗放射源的立案侦查和追缴;
(三)卫生主管部门负责辐射事故的医疗应急。
环境保护主管部门、公安部门、卫生主管部门应当及时相互通报辐射事故应急响应、调查处理、定性定级、立案侦查和医疗应急情况。国务院指定的部门根据环境保护主管部门确定的辐射事故的性质和级别,负责有关国际信息通报工作。
第四十五条 发生辐射事故的单位应当立即将可能受到辐射伤害的人员送至当地卫生主管部门指定的医院或者有条件救治辐射损伤病人的医院,进行检查和治疗,或者请求医院立即派人赶赴事故现场,采取救治措施。
第五章 监督检查
第四十六条 县级以上人民政府环境保护主管部门和其他有关部门应当按照各自职责对生产、销售、使用放射性同位素和射线装置的单位进行监督检查。
被检查单位应当予以配合,如实反映情况,提供必要的资料,不得拒绝和阻碍。
第四十七条 县级以上人民政府环境保护主管部门应当配备辐射防护安全监督员。辐射防护安全监督员由从事辐射防护工作,具有辐射防护安全知识并经省级以上人民政府环境保护主管部门认可的专业人员担任。辐射防护安全监督员应当定期接受专业知识培训和考核。
第四十八条 县级以上人民政府环境保护主管部门在监督检查中发现生产、销售、使用放射性同位素和射线装置的单位有不符合原发证条件的情形的,应当责令其限期整改。
监督检查人员依法进行监督检查时,应当出示证件,并为被检查单位保守技术秘密和业务秘密。
第四十九条 任何单位和个人对违反本条例的行为,有权向环境保护主管部门和其他有关部门检举;对环境保护主管部门和其他有关部门未依法履行监督管理职责的行为,有权向本级人民政府、上级人民政府有关部门检举。接到举报的有关人民政府、环境保护主管部门和其他有关部门对有关举报应当及时核实、处理。
第六章 法律责任
第五十条 违反本条例规定,县级以上人民政府环境保护主管部门有下列行为之一的,对直接负责的主管人员和其他直接责任人员,依法给予行政处分;构成犯罪的,依法追究刑事责任:
(一)向不符合本条例规定条件的单位颁发许可证或者批准不符合本条例规定条件的单位进口、转让放射性同位素的;
(二)发现未依法取得许可证的单位擅自生产、销售、使用放射性同位素和射线装置,不予查处或者接到举报后不依法处理的;
(三)发现未经依法批准擅自进口、转让放射性同位素,不予查处或者接到举报后不依法处理的;
(四)对依法取得许可证的单位不履行监督管理职责或者发现违反本条例规定的行为不予查处的;
(五)在放射性同位素、射线装置安全和防护监督管理工作中有其他渎职行为的。
第五十一条 违反本条例规定,县级以上人民政府环境保护主管部门和其他有关部门有下列行为之一的,对直接负责的主管人员和其他直接责任人员,依法给予行政处分;构成犯罪的,依法追究刑事责任:
(一)缓报、瞒报、谎报或者漏报辐射事故的;
(二)未按照规定编制辐射事故应急预案或者不依法履行辐射事故应急职责的。
第五十二条 违反本条例规定,生产、销售、使用放射性同位素和射线装置的单位有下列行为之一的,由县级以上人民政府环境保护主管部门责令停止违法行为,限期改正;逾期不改正的,责令停产停业或者由原发证机关吊销许可证;有违法所得的,没收违法所得;违法所得10万元以上的,并处违法所得1倍以上5倍以下的罚款;没有违法所得或者违法所得不足10万元的,并处1万元以上10万元以下的罚款:
(一)无许可证从事放射性同位素和射线装置生产、销售、使用活动的;
(二)未按照许可证的规定从事放射性同位素和射线装置生产、销售、使用活动的;
(三)改变所从事活动的种类或者范围以及新建、改建或者扩建生产、销售、使用设施或者场所,未按照规定重新申请领取许可证的;
(四)许可证有效期届满,需要延续而未按照规定办理延续手续的;
(五)未经批准,擅自进口或者转让放射性同位素的。
第五十三条 违反本条例规定,生产、销售、使用放射性同位素和射线装置的单位变更单位名称、地址、法定代表人,未依法办理许可证变更手续的,由县级以上人民政府环境保护主管部门责令限期改正,给予警告;逾期不改正的,由原发证机关暂扣或者吊销许可证。
第五十四条 违反本条例规定,生产、销售、使用放射性同位素和射线装置的单位部分终止或者全部终止生产、销售、使用活动,未按照规定办理许可证变更或者注销手续的,由县级以上人民政府环境保护主管部门责令停止违法行为,限期改正;逾期不改正的,处1万元以上10万元以下的罚款;造成辐射事故,构成犯罪的,依法追究刑事责任。
第五十五条 违反本条例规定,伪造、变造、转让许可证的,由县级以上人民政府环境保护主管部门收缴伪造、变造的许可证或者由原发证机关吊销许可证,并处5万元以上10万元以下的罚款;构成犯罪的,依法追究刑事责任。
违反本条例规定,伪造、变造、转让放射性同位素进口和转让批准文件的,由县级以上人民政府环境保护主管部门收缴伪造、变造的批准文件或者由原批准机关撤销批准文件,并处5万元以上10万元以下的罚款;情节严重的,可以由原发证机关吊销许可证;构成犯罪的,依法追究刑事责任。
第五十六条 违反本条例规定,生产、销售、使用放射性同位素的单位有下列行为之一的,由县级以上人民政府环境保护主管部门责令限期改正,给予警告;逾期不改正的,由原发证机关暂扣或者吊销许可证:
(一)转入、转出放射性同位素未按照规定备案的;
(二)将放射性同位素转移到外省、自治区、直辖市使用,未按照规定备案的;
(三)将废旧放射源交回生产单位、返回原出口方或者送交放射性废物集中贮存单位贮存,未按照规定备案的。
第五十七条 违反本条例规定,生产、销售、使用放射性同位素和射线装置的单位有下列行为之一的,由县级以上人民政府环境保护主管部门责令停止违法行为,限期改正;逾期不改正的,处1万元以上10万元以下的罚款:
(一)在室外、野外使用放射性同位素和射线装置,未按照国家有关安全和防护标准的要求划出安全防护区域和设置明显的放射性标志的;
(二)未经批准擅自在野外进行放射性同位素示踪试验的。
第五十八条 违反本条例规定,生产放射性同位素的单位有下列行为之一的,由县级以上人民政府环境保护主管部门责令限期改正,给予警告;逾期不改正的,依法收缴其未备案的放射性同位素和未编码的放射源,处5万元以上10万元以下的罚款,并可以由原发证机关暂扣或者吊销许可证:
(一)未建立放射性同位素产品台账的;
(二)未按照国务院环境保护主管部门制定的编码规则,对生产的放射源进行统一编码的;
(三)未将放射性同位素产品台账和放射源编码清单报国务院环境保护主管部门备案的;
(四)出厂或者销售未列入产品台账的放射性同位素和未编码的放射源的。
第五十九条 违反本条例规定,生产、销售、使用放射性同位素和射线装置的单位有下列行为之一的,由县级以上人民政府环境保护主管部门责令停止违法行为,限期改正;逾期不改正的,由原发证机关指定有处理能力的单位代为处理或者实施退役,费用由生产、销售、使用放射性同位素和射线装置的单位承担,并处1万元以上l0万元以下的罚款:
(一)未按照规定对废旧放射源进行处理的;
(二)未按照规定对使用Ⅰ类、Ⅱ类、Ⅲ类放射源的场所和生产放射性同位素的场所,以及终结运行后产生放射性污染的射线装置实施退役的。
第六十条 违反本条例规定,生产、销售、使用放射性同位素和射线装置的单位有下列行为之一的,由县级以上人民政府环境保护主管部门责令停止违法行为,限期改正;逾期不改正的,责令停产停业,并处2万元以上20万元以下的罚款;构成犯罪的,依法追究刑事责任:
(一)未按照规定对本单位的放射性同位素、射线装置安全和防护状况进行评估或者发现安全隐患不及时整改的;
(二)生产、销售、使用、贮存放射性同位素和射线装置的场所未按照规定设置安全和防护设施以及放射性标志的。
第六十一条 违反本条例规定,造成辐射事故的,由原发证机关责令限期改正,并处5万元以上20万元以下的罚款;情节严重的,由原发证机关吊销许可证;构成违反治安管理行为的,由公安机关依法予以治安处罚;构成犯罪的,依法追究刑事责任。
因辐射事故造成他人损害的,依法承担民事责任。
第六十二条 生产、销售、使用放射性同位素和射线装置的单位被责令限期整改,逾期不整改或者经整改仍不符合原发证条件的,由原发证机关暂扣或者吊销许可证。
第六十三条 违反本条例规定,被依法吊销许可证的单位或者伪造、变造许可证的单位,5年内不得申请领取许可证。
第六十四条 县级以上地方人民政府环境保护主管部门的行政处罚权限的划分,由省、自治区、直辖市人民政府确定。
第七章 附 则
第六十五条 军用放射性同位素、射线装置安全和防护的监督管理,依照《中华人民共和国放射性污染防治法》第六十条的规定执行。
第六十六条 劳动者在职业活动中接触放射性同位素和射线装置造成的职业病的防治,依照《中华人民共和国职业病防治法》和国务院有关规定执行。
第六十七条 放射性同位素的运输,放射性同位素和射线装置生产、销售、使用过程中产生的放射性废物的处置,依照国务院有关规定执行。
第六十八条 本条例中下列用语的含义:
放射性同位素,是指某种发生放射性衰变的元素中具有相同原子序数但质量不同的核素。
放射源,是指除研究堆和动力堆核燃料循环范畴的材料以外,永久密封在容器中或者有严密包层并呈固态的放射性材料。
射线装置,是指X线机、加速器、中子发生器以及含放射源的装置。
非密封放射性物质,是指非永久密封在包壳里或者紧密地固结在覆盖层里的放射性物质。
转让,是指除进出口、回收活动之外,放射性同位素所有权或者使用权在不同持有者之间的转移。
伴有产生X射线的电器产品,是指不以产生X射线为目的,但在生产或者使用过程中产生X射线的电器产品。
辐射事故,是指放射源丢失、被盗、失控,或者放射性同位素和射线装置失控导致人员受到意外的异常照射。
第六十九条 本条例自2005年12月1日起施行。1989年10月24日国务院发布的《放射性同位素与射线装置放射防护条例》同时废止。
国务院于2014年7月29日发布《国务院关于修改部分行政法规的决定(国令第653号),其中对本条例部分条款进行了修改。
一、将第六条第一款修改为:“除医疗使用Ⅰ类放射源、制备正电子发射计算机断层扫描用放射性药物自用的单位外,生产放射性同位素、销售和使用Ⅰ类放射源、销售和使用Ⅰ类射线装置的单位的许可证,由国务院环境保护主管部门审批颁发。”
二、将第六条第二款修改为:“除国务院环境保护主管部门审批颁发的许可证外,其他单位的许可证,由省、自治区、直辖市人民政府环境保护主管部门审批颁发。”
二 : 课本终于承认18O不是放射性同位素了
2007年9月27日博主发表了《鲁宾和卡门的实验方法是放射性同位素标记法吗?》一文(链接:),对人教版课标教材《高中生物·必修1(分子与细胞)》把18O视为放射性同位素,各种教辅资料以讹传讹的现象提出了批评。今天博主欣喜地发现该教材的最新版本(2008年秋季用书)已经纠正了这一错误,知错能改,善莫大焉。下面把新旧版本中异动的内容摘抄于下,希望引起各位同行的重视。
旧版本(P102)在谈到鲁宾和卡门的实验之前,写道:“随着技术的进步,人们发现了放射性同位素,这为解决氧气来自水还是二氧化碳提供了研究手段。”新版本中改成:“随着技术的进步,人们对同位素有了更多的了解,这为解决氧气来自水还是二氧化碳提供了研究手段。”
旧版本在介绍了鲁宾和卡门的实验之后,又专门用下面这段文字说明什么是同位素标记法:“放射性同位素可用于追踪物质的运行和变化规律。用放射性同位素标记的化合物,化学性质不会改变。科学家通过追踪放射性同位素标记的化合物,可以弄清化学反应的详细过程。这种方法叫做同位素标记法。”新版本中这段文字改成:“同位素可用于追踪物质的运行和变化规律。用同位素标记的化合物,化学性质不会改变。科学家通过追踪同位素标记的化合物,可以弄清化学反应的详细过程。这种方法叫做同位素标记法。”即把“放射性同位素”都改成“同位素”,去掉了“放射性”的字样。
在此再一次提醒各位同行:生物实验中常用到同位素标记法,使用的同位素既有放射性同位素如3H、14C、32P、35S、131I、42K等,也有稳定同位素如[www.61k.com)15N、18O等,不要以为“同位素标记法”中使用的都是放射性同位素。
如果你还不相信18O没有放射性,请访问下面的链接:
三 : 放射性同位素是什么
放射性同位素是什么
如果两个原子质子数目相同,但中子数目不同,则他们仍有相同的原子序,在周期表是同一位置的元素,所以两者就叫同位素。有放射性的同位素称为“放射性同位素”,没有放射性的则称为“稳定同位素”,并不是所有同位素都具有放射性。
放射性同位素(radiosotlope)是不稳定的,它会“变”。放射性同位素的原子核很不稳定,会不间断地、自发地放射出射线,直至变成另一种稳定同位素,这就是所谓“核衰变”。放射性同位素在进行核衰变的时候,可放射出α射线、β射线、γ射线和电子俘获等,但是放射性同位素在进行核衰变的时候并不一定能同时放射出这几种射线。核衰变的速度不受温度、压力、电磁场等外界条件的影响,也不受元素所处状态的影响,只和时间有关。放射性同位素衰变的快慢,通常用“半衰期”来表示。半衰期(half-life)即一定数量放射性同位素原子数目减少到其初始值一 半时所需要的时间。如磷-32的半衰期是14.3天,就是说,假使原来有100万个磷-32原子,经过14.3天后,只剩下50万个了。半衰期越长,说明衰变得越慢;半衰期越 短,说明衰变得越快。半衰期是放射性同位素的一特征常数,不同的放射性同位素有不同的半衰期,衰变的时候放射出射线的种类和数量也不同。
四 : 放射性同位素:放射性同位素-起源,放射性同位素-简介
放射性同位素,是指如果两个原子质子数目相同,但中子数目不同,则他们仍有相同的原子序,在周期表是同一位置的元素,所以两者就叫同位素。有放射性的同位素称为“放射性同位素”,没有放射性的则称为“稳定同位素”,并不是所有同位素都具有放射性。
放射性同位素_放射性同位素 -起源
放射性同位素_放射性同位素 -简单介绍
自19世纪末发现了放射性以后,到20世纪初,人们发现的放射性元素已有30多种,而且证明,有些放射性元素虽然放射性显著不同,但化学性质却完全一样。1910年英国化学家F.索迪提出了1个假说,化学元素存在着相对原子质量和放射性不同而其他物理化学性质相同的变种,这些变种应处于周期表的同一位置上,称做同位素。不久,就从不同放射性元素得到1种铅的相对原子质量是206.08,另1种则是208。1897年英国物理学家W.汤姆逊发现了电子,1912年他改进了测电子的仪器,利用磁场作用,制成了1种磁分离器(质谱仪的前身)。当他用氖气进行测定时,无论氖怎样提纯,在屏上得到的却是两条抛物线,一条代表质量为20的氖,另一条则代表质量为22的氖。这就是第一次发现的稳定同位素,即无放射性的同位素。当F.W.阿斯顿制成第一台质谱仪后,进1步证明,氖确实具有原子质量不同的2种同位素,并从其他70多种元素中发现了200多种同位素。到目前为止,己发现的元素有10九种,只有二十种元素未发现稳定的同位素,但所有的元素都有放射性同位素。大多数的天然元素都是由几种同位素组成的混合物,稳定同位素约300多种,而放射性同位素竟达1500种以上。
1932年提出原子核的中子一质子理论以后,才进1步弄清,同位素就是1种元素存在着质子数相同而中子数不同的几种原子。由于质子数相同,所以它们的核电荷和核外电子数都是相同的(质子数=核电荷数=核外电子数),并具有相同电子层结构。因此,同位素的化学性质是相同的,但由于它们的中子数不同,这就造成了各原子质量会有所不同,涉及原子核的某些物理性质(如放射性等),也有所不同。一般来说,质子数为偶数的元素,可有较多的稳定同位素,而且通常不少于三个,而质子数为奇数的元素,一般只有1个稳定核素,其稳定同位素从不会多于2个,这是由核子的结合能所决定的。同位素的发现,使人们对原子结构的认识更深1步。这不仅使元素概念有了新的含义,而且使相对原子质量的基准也发生了重大的变革,再一次证明了决定元素化学性质的是质子数(核电荷数),而不是原子质量数。
放射性同位素_放射性同位素 -特点
众所周知,放射性同位素(radiosotlope)是不稳定的,它会“变”。放射性同位素的原子核很不稳定,会不间断地、自发地放射出射线,直至变成另1种稳定同位素,这就是所谓“核衰变”。放射性同位素在进行核衰变的时候,可放射出α射线、β射线、γ射线和电子俘获等,但是放射性同位素在进行核衰变的时候并不一定能同时放射出这几种射线。核衰变的速度不受温度、压力、电磁场等外界条件的影响,也不受元素所处状态的影响,只和时间有关。放射性同位素衰变的快慢,通常用“半衰期”来表示。半衰期(half-life)即一定数量放射性同位素原子数目减少到其初始值一半时所需要的时间。如磷-32的半衰期是14.3天,就是说,假使原来有100万个磷-32原子,经过14.3天后,只剩下50万个了。半衰期越长,说明衰变得越慢,半衰期越短,说明衰变得越快。半衰期是放射性同位素的一特征常数,不同的放射性同位素有不同的半衰期,衰变的时候放射出射线的种类和数量也不同。
常用同位素的特征
<>
同位素
符号
半衰期
β射线能量(MeV)
氢-3
3H
12.3年
0.018
碳-14
14C
5720年
0.156
磷-32
32P
14.3天
1.71
硫-35
35S
87.1天
0.167
碘-131
131I
8.05天
0.605
人造元素一览表
原子序数
元素名称
元素符号
发现者
发现年代
半衰期
43
锝
Tc
西格雷,佩里埃
1937
Tc97 260万年
61
钷
Pm
马林斯基等
1945
Pm145 18年
85
砹
At
西格雷,科森等
1940
At210 8.1小时
87
钫
Fr
佩雷
1939
Fr212 20分钟
93
镎
Np
麦克米伦
1940
Np237 214万年
94
钚
Pu
麦克米伦,西博格
1940
Pu244 7.6×107年
95
镅
Am
西博格,吉奥索
1944
Am243 7370年
96
锔
Cm
西博格,吉奥索
1944
Cm247 1.54×107年
97
锫
Bk
西博格,汤普生等
1949
Bk247 1400年
98
锎
Cf
西博格,吉奥索等
1950
Cf251 900年
99
锿
Es
西博格,吉奥索
1955
Es254 276天
100
镄
Fm
西博格,吉奥索
1955
Fm257 82天
101
钔
Md
吉奥索
1955
Md258 55天
102
锘
No
弗列罗夫等
1957
No259 58分钟
103
铹
Lr
吉奥索
1961
Lr260 3分钟
104
Rf
弗列罗夫,吉奥索
1964,1968
~1分钟
105
Db
弗列罗夫,吉奥索
1970,1970
~40秒
106
Sg
美,苏
1974
~0.9秒
107
Bh
联邦德国
1981
~10-3秒
108
Hs
联邦德国
1984
~10-3秒
109
Mt
联邦德国
1982
5×10-3秒
放射性同位素_放射性同位素 -放射性强度及其度量单位
放射性同位素原子数目的减少服从指数规律。随着时间的增加,放射性原子的数目按几何级数减少,用公式表示为:N=N0e-λt这里,N为经过t时间衰变后,剩下的放射性原子数目,N0为初始的放射性原子数目,λ为衰变常数,是与该种放射性同位素性质有关的常数,λ=y(t)=e-0.693t/τ,其中τ指半衰期。放射性同位素不断地衰变,它在单位时间内发生衰变的原子数目叫做放射性强度(radioactivity),放射性强度的常用单位是居里(curie),表示在1秒钟内发生3.7×1010次核衰变,符号为Ci。1Ci=3.7×1010dps=2.22×1012dpm;1mCi=3.7×107dps=2.22×109dpm;1μCi=3.7×104dps=2.22×106dpm
1977年国际放射防护委员会(ICRP)发表的第26号出版物中,根据国际辐射单位与测量委员会(ICRU)的建议,对放射性强度等计算单位采用了国际单位制(SI),中国于1986年正式执行。在SI中,放射性强度单位用贝柯勒尔(becquerel)表示,简称贝可,为1秒钟内发生一次核衰变,符号为Bq。1Bq=1dps=2.703×10-11Ci该单位在实际应用中减少了换算步骤,方便了使用。
放射性同位素_放射性同位素 -射线与物质的相互作用
放射性同位素放射出的射线碰到各种物质的时候,会产生各种效应,它包括射线对物质的作用和物质对射线的作用2个相互联系的方面。例如,射线能够使照相底片和核子乳胶感光;使一些物质产生荧光;可穿透一定厚度的物质,在穿透物质的过程中,能被物质吸收一部分,或者是散射一部分,还可能使一些物质的分子发生电离;另外,当射线辐照到人、动物和植物体时,会使生物体发生生理变化。射线与物质的相互作用,对核射线来说,它是1种能量传递和能量损耗过程,对受照射物质来说,它是1种对外来能量的物理性反应和吸收过程。
各种射线由于其本身的性质不同,与物质的相互作用各有特点。这种特点还常与物质的密度和原子序数有关。α射线通过物质时,主要是通过电离和激发把它的辐射能量转移给物质,其射程很短,1个1兆电子伏(1MeV)的α射线,在空气中的射程约1.0<厘米,在铅金属中只有23微米(um),一张普通纸就能将α射线完全挡住,但α射线的能量能被组织和器官全部吸收。β射线也能引起物质电离和激发,与α射线的能量相同的β射线,在同一物质中的射程比α要长得多,如>1MeVrβ射线,在空气中的射程是10米,高能量快速运动的β粒子,如磷-,能量为1.71MeV遇到物质,特别是突然被原子序数高的物质(如铅,原子序数为82)阻止后,运动方向会发生改变,产生轫致辐射。轫致辐射是1种连续的电磁辐射,它发生的几率与β射线的能量和物质的原子序数成正比,因此在防护上采用低密度材料,以减少轫致辐射。β射线能被不太厚的铝层等吸收。γ射线的穿透力最强,射程最大,1MeV的r射线在空气中的射程约有米之远,r射线作用于物质可产生光电效应、康普顿效应和电子对效应,它不会被物质完全吸收,只会随着物质厚度的增加而逐渐减弱。
放射性同位素_放射性同位素 -主要作用
1.射线照相技术,可以把物体内部的情况显示在照片上。
2.测定技术方面的应用,古生物年龄的测定,对生产过程中的材料厚度进行监视和控制等。
3.用放射性同位素作为示踪剂。
4.用放射性同位素的能量,作为航天器、人造心脏能源等。
5.利用放射性同位素的杀伤力,转恶为善,治疗癌症、灭菌消毒以及进行催化反应等。
放射性同位素_放射性同位素 -发展方向
放射性同位素的应用是沿着以下2个方向展开的.
1.利用它的射线
放射性同位素也能放出α射线、β射线和r射线.γ射线由于贯穿本领强,可以用来检查金属内部有没有沙眼或裂纹,所用的设备叫α射线探伤仪.α射线的电离作用很强,可以用来消除机器在运转中因摩擦而产生的有害静电.生物体内的DNA(脱氧核糖核酸)承载着物种的遗传密码,但是DNA在射线作用下可能发生突变,所以通过射线照射可以使种子发生变异,培养出新的优良品种.射线辐射还能抑制农作物害虫的生长,甚至直接消灭害虫.人体内的癌细胞比正常细胞对射线更敏感,因此用射线照射可以治疗恶性肿瘤,这就是医生们说的“放疗”.
和天然放射性物质相比,人造放射性同位素的放射强度容易控制,还可以制成各种所需的形状,特别是,它的半衰期比天然放射性物质短得多,因此放射性废料容易处理.由于这些优点,在生产和科研中凡是用到射线时,用的都是人造放射性同位素,不用天然放射性物质.
2.作为示踪原子
1种放射性同位素的原子核跟这种元素其他同位素的原子核具有相同数量的质子(只是中子的数量不同),因此核外电子的数量也相同,由此可知,1种元素的各种同位素都有相同的化学性质.这样,我们即可用放射性同位素代替非放射性的同位素来制成各种化合物,这种化合物的原子跟通常的化合物一样参与所有化学反应,却带有“放射性标记”,用仪器可以探测出来.这种原子叫做示踪原子.
棉花在结桃、开花的时候需要较多的磷肥,把磷肥喷在棉花叶子上也能吸收.但是,什么时候的吸收率最高、磷能在作物体内存留多长时间、磷在作物体内的分布情况等,用通常的方法很难研究.如果用磷的放射性同位素制成肥料喷在棉花叶面,然后每隔一定时间用探测器测量棉株各部位的放射性强度,上面的问题就很容易解决.
人体甲状腺的工作需要碘.碘被吸收后会聚集在甲状腺内.给人注射碘的放射性同位素碘131,然后定时用探测器测量甲状腺及邻近组织的放射强度,有助于诊断甲状腺的器质性和功能性疾病.
近年来,有关生物大分子的结构及其功能的研究,几乎都要借助于放射性同位素.
放射性同位素_放射性同位素 -应用
同位素示踪法(isotopictracermethod)是利用放射性核素作为示踪剂对研究对象进行标记的微量分析方法,示踪实验的创建者是Hevesy。Hevesy于1923年首先用天然放射性212Pb研究铅盐在豆科植物内的分布和转移。继后Jolit和Curie于1934年发现了人工放射性,以及其后生产方法的建立(加速器、反应堆等),为放射性同位素示踪法的更快的发展和广泛应用提供了基本的条件和有力的保障。
同位素示踪法基本原理和特点
同位素示踪所利用的放射性核素(或稳定性核素)及它们的化合物,与自然界存在的相应普通元素及其化合物之间的化学性质和生物学性质是相同的,只是具有不同的核物理性质。因此,即可用同位素作为1种标记,制成含有同位素的标记化合物(如标记食物,药物和代谢物质等)代替相应的非标记化合物。利用放射性同位素不断地放出特征射线的核物理性质,即可用核探测器随时追踪它在体内或体外的位置、数量及其转变等,稳定性同位素虽然不释放射线,但可以利用它与普通相应同位素的质量之差,通过质谱仪,气相层析仪,核磁共振等质量分析仪器来测定。放射性同位素和稳定性同位素都可作为示踪剂(tracer),但是,稳定性同位素作为示踪剂其灵敏度较低,可获得的种类少,价格较昂贵,其应用范围受到限制;而用放射性同位素作为示踪剂不仅灵敏度,测量方法简便易行,能准确地定量,准确地定位及符合所研究对象的生理条件等特点:
1.灵敏度高
放射性示踪法可测到10-14-10-18克水平,就可以以从10十五个非放射性原子中检出1个放射性原子。它比目前较敏感的重量分析天平要敏感108-107倍,而迄今最准确的化学分析法很难测定到10-12克水平;
2.方法简便
放射性测定不受其它非放射性物质的干扰,可以省略许多复杂的物质分离步骤,体内示踪时,可以利用某些放射性同位素释放出穿透力强的r射线,在体外测量而获得结果,这就大大简化了实验过程,做到非破坏性分析,随着液体闪烁计数的发展,14C和3H等发射软β射线的放射性同位素在医学及生物学实验中得到越来越广泛的应用;
3.定位定量准确
放射性同位素示踪法能准确定量地测定代谢物质的转移和转变,与某些形态学技术相结合(如病理组织切片技术,电子显微镜技术等),可以确定放射性示踪剂在组织器官中的定量分布,并且对组织器官的定位准确度可达细胞水平、亚细胞水平乃至分子水平;
4.符合生理条件
在放射性同位素实验中,所引用的放射性标记化合物的化学量是极微量的,它对体内原有的相应物质的重量改变是微不足道的,体内生理过程仍保持正常的平衡状态,获得的分析结果符合生理条件,更能反映客观存在的事物本质。放射性同位素示踪法的优点如上所述,但也存在一些缺陷,如从事放射性同位素工作的人员要受一定的专门训练,要具备相应的安全防护措施和条件,在目前个别元素(如氧、氮等)还没有合适的放射性同位素等等。在作示踪实验时,还必须注意到示踪剂的同位素效应和放射效应问题。所谓同位素效应是指放射性同位素(或是稳定性同位素)与相应的普通元素之间存在着化学性质上的微小差异所引起的个别性质上的明显区别,对于轻元素而言,同位素效应比较严重。因为同位素之间的质量判别是倍增的,如3H质量是1H的三倍,2H是1H的两倍,当用氚水(3H2O)作示踪剂时,它在普通H2O中的含量不能过大,否则会使水的物理常数、对细胞膜的渗透及细胞质粘性等都会发生改变。但在一般的示踪实验中,由同位素效应引起的误差,常在实验误差内,可忽略不计。放射性同位素释放的射线利于追踪测量,但射线对生物体的作用达到一定剂量时,会改变机体的生理状态,这就是放射性同位素的辐射效应,因此放射性同位素的用量应小于安全剂量,严格控制在生物机体所能允许的范围之内,以免实验对象受辐射损伤,而得错误的结果。
示踪实验的设计原则
设计1个放射性同位素的示踪实验应从实验的目的性,实验所具备的条件和对放射性的防护水平三方面着手考虑。原则上必须从2个主要方面来设计放射性示踪实验:一是必须寻求有效的、可重复的测定放射性强度的条件,二是必须选择1个合适的比活度λqδ(单位是原子/时间/分子,dpm/mol或ci/mol)。其中,λ=-dN’dt/N’为该处放射性原子核的衰变常数。q=N’/n’,表示n’个该化学形式分子为N’个放射性原子所标记。δ=n’/n表示放射性标记的分子数n’与总分子数(标记的加未标记的)n之比。采用放射性同位素示踪技术来实现所研究课题预期目的全部或一部分,一般须经过实验准备阶段,实验阶段和放射性废物处理3个步骤。
(一)实验准备阶段
1.示踪剂的选择
选定放射性示踪剂的比活度λqδ的值必须足够大,以保证实验所需要的灵敏度,而又要尽可能地小,使得在该实验条件下辐射自分解可忽略。一般情形是根据实验目的和实验周期长短,来选择具有合适的衰变方式,辐射类型和半衰期,且放射毒性低的放射性同位素。至今已确定的放射性核素包括天然的5八种和人工制造的约1300种,其中大多数不常能用作放射性示踪剂。主要原因是制备困难、半衰期不合适及放射性不足以定量。在任何1种生产方法中,生产步骤很可能包含或多或少的化学处理,因而示踪实验人员需要了解某个核素及其周围的那些元素的化学性质,因为它们有可能成为此放射性同位素的杂质。
放射性同位素都衰变(经过或不经过中间状态)到处于基态的子体核素,衰变时伴随各种形式的能量辐射,如α、β-、β+、γ、X放射等。在选择示踪剂时,示踪实验人员要仔细研究衰变纲图,根据实验条件和计数条件来决定那1种辐射,在衰变纲变内,代表核能级的两条水平线之间和距离表示能量差,↑或↓表示能级同伴随原子序数增或减少的能量,↓表示从激发态至基态的同质异能跃迁。一般要选择最适宜的半衰期τ的放射性同位素,使τ足够长,从而使衰变校正有意义或干脆不必作衰变校正,同时又要足够短,能较安全地进行示踪实验,并使得放射性废物容易处理,在实际工作中,使用的放射性同位素的半衰期应该与实验需要持续的时间t相适应,如对于某个实验,t/τ=0.04时,应所选放射性同位素的衰变校正为3.5%;而t/τ=0.10时,应选放射性同位素的衰变校正为6.6%。t/τ=0.15时,应选用其衰变校正为10%。
在体外示踪条件,一般选用半衰期较长而射线强度适中,既利于探测,又易于防护和保存的放射性示踪剂。体内示踪条件下,若实验周期短,应选用半衰期短,且能放出一定强度r射线物放射性同位素,若实验周期长,如需要将动物活杀后对组织脏器分别测定的,则应选用半衰期较长放射性同位素。此外,根据实验目的来选用定位的或不定位的标记示踪剂,例如研究氨基酸的脱羧反应,14C应标记在羧基上,只有这种定位标记的氨基酸,才能在脱羧后产生14CO2。而有些实验不要求特定位置标记,只须均匀标记就可以。
选择放射性示踪剂还必须同时满足高化学纯度,高放射性核纯度的要求。在示踪剂制备期间、贮存期间以用试验体系中所使用的溶剂、化学试剂、酶等可能会产生化学杂质、放射化学杂质及辐射自分解引起的放射性杂质,这些杂质的存在,使得示踪实验中使用的示踪剂不“纯”,而或多或少影响实验的结果,甚至会导致错误结论。氚标记的胸腺嘧啶核苷(3H-TdR)和尿嘧啶核苷(3H-UR)是2种常用的示踪剂,前者有效地结合到DNA中,后者则掺入到RNA中,它们的辐射分解速度随比较放射性的增高及保存时间的延长而增加,在不同温度和不同溶液中的稳定性也不同。经保存八年的3H-TdR约有35%辐射分解为3H-胸腺嘧啶,并导致二醇和水合物的形式,在实验中这杂质会很快掺入细胞并与大分子(很可能是蛋白质)结合,而不是与DNA和RNA相结合,这些杂质用DNA酶和RNA酶处理细胞都不除去。3H-TdR和3H-UR贮存在-20℃的冷冻溶液中辐射分离速度要比+2℃增加3-4倍,但低温度(-140℃)对贮存也有利,在允许对示踪实验人员在选择保存放射性示踪剂时会有所启发;
2.放射性同位素测量方法的选择
测量方法的选择取决于射线种类,对于α射线通常可用硫化锌晶体、电离室、核乳胶等方法探测;对能量高的β射线可用云母窗计数管、塑料闪烁晶体及核乳胶测定,对于能量低的β射线可用液体闪烁计数器测量:对于γ射线则用G-M计数管,碘化钠(铊)闪烁晶体探测。目前大多数实验室主要采用晶体闪烁计数法和液体闪烁计数法2种测量方式。
同一台探测仪器对不同量的示踪剂具有不同的最佳工作条件,在实验准备阶段要检查探测器是否已调有所用示踪同位素的工作条件,否则需要用一定量的示踪剂作为放射源(或选用该同位素的标准源),把探测器的最佳工作条件调整好,并且要保证探测器性能处于稳定可靠的状态。
探测最佳工作条件的选择方法:1种是测“坪曲线”,另1种是找最好的品质因素。对于光电倍增管,在理论上不存在“坪”(plateau)。但随着高压的增加,在一定范围内,脉冲数变化较小,形成一段坡度较小的电压脉冲曲线,通常也称其为坪。测坪曲线的方法:固定放射源,根据其射线能量的大小,初选1个广大器增益(放大倍数)和甄别器阈值。不断地改变高压(由低到高,均匀增加伏度),每改变一次高压,都测定一次本底和放射源的计数率,最后作出高压本底计数率和高压放射源计数曲线。用同样的方法,作另1个甄别阈值(放大倍数不变)下的高压计数率曲线,这样反复多作几条曲线。必要时,还可固定甄别阈值,改变放大倍数,求出高压计数率曲线。应选择“坪”比较平坦的曲线工作条件:甄别阈值和放大增益,作为正式测定时间的仪器工作条件,高压值应选择在该“坪”中点偏向起始段一边相应的高压值。品质因素,又称为优值,是指在一定条件下,要达到合适的统计数目所需要的时间是仪器的计数效率E和本底计数Nb的函数:品质因素F=E2/Nb它是衡量一台计数器性能的指标,仪器的品质因素F应该越大越好,品质因素F越大,表示测量效率E越高而本底Nb越小。如果某放射性示踪的标准源存在来源困难等问题的话,可以用相对品质因素f来代替。相品质因素f=ns/nb式中ns指某种放射性样品的计数率。找最好品质因素的方法与测坪曲线一样,作出几条高压-F(或f)的关系曲线,在几条曲线中选择峰值最高的曲线。这根曲线的峰值所对应的条件:高压,甄别阈,放大倍数等,就是该仪器对被测同位素的最佳工作条件。最佳品质因素不一定恰好落在“坪”上,有的在“坪”附近,有的却在“坪”的下端。着眼于把同位素的整个能谱峰都计下来的示踪实验者主张取“坪”所对应的工作条件,而着眼于优值者,主张取最佳品质因素所对应的工作条件,也有人折衷。如果某仪器本底很低,光电倍增管噪音很低和能谱分辩高,二者应该相差不大。同一台仪器的最佳工作条件,随仪器的使用期延长而有所改变,不同的放射性同位素,其最佳工作条件不同。因此核探测仪器的最佳工作条件具有专属性,并且要经常通过选择其不同时期的最佳工作条件。更不能不问被测同位素的种类,而千篇一律地使用同1个工作条件。
为了达到准确地计数,可以长时间一次计数,或短时间多次测量,两者达到的标准误基本相同,为避免外界因素的影响,在实际工作中,取短时间多次测量较为合理适用。在测量样品的放射性时,本底是1个重要影响因素。本底高,则标准误和标准误差都增大,尤其在样品计数较低时,本底对标准误和标准误差的影响就愈大,从而影响实验结果的精度,而且为了达到一定的精度,势别要增加样品的测量时间。根据核衰变的统计规律,在实验中如果样品数量少,选择tN=1.4tb的比例(式中tN为样品放射性测量时间,tb为本底测量时间)较为合理;如果样品数量较多是1大批样品,则延长本底测量时间tb,取tb的时间均值,而tN则可相对短,这样可节省时间,有利于缩短实验周期。对于示踪实验设计来说,样品中所含放射性强度的要求,是使其放射性计数率大于或等于本底计数的10-20倍;
3.进行非放射性的模拟实验,把实验全过程预演一遍
同位素示踪实验要求准确、仔细,稍有疏忽或考虑不周就匆忙进行正式实验,既容易导致实验失败,又会造成示踪剂和其它实验用品的浪费,还会增加放射性废物,增加实验室本底水平,使实验者接受不必要的辐射剂量,所以模拟实验不仅可以检查正式实验中所用器材,药品是否合格,又可以操作人员进行训练,以保证正式实验能顺利进行。
(二)正式实验阶段
1.选择放射性同位素的剂量
同位素必须能经得起稀释,使其最后样品的放射性不能低于本底,一般来说放射性同位素在生物体内不是完全均匀地被稀释,可能在某些器官、组织、细胞、某些分子中有选择性地蓄积,蓄积的部分放射性就会很强,在这种情况下,应以相关部位对示踪剂的蓄积率来考虑示踪剂用量。在细胞培养,切片保温,酶反应等示踪实验中,应依据实验目的、反应时间及反应体积的不同来考虑示踪剂的用量,通常小于1个微居里或几个微居里。由于放射性同位素存在辐射效应,应该根据使用的放射性核素的种类,将用量控制在最大允许剂量之内(maximunpermissibledose),以免因剂量过大所造成的辐射效应,给实验带来较大的误差;
2.选择示踪剂给入途径
整体示踪实验时,应根据实验目的,选择易吸收、易操作的给入途径,一般给予的数量体积小,要求给予的剂量准确,防止可能的损失和不必要的污染。体外示踪实验时,应根据实验设计的实验步骤的某个环节加入一定剂量的示踪到反应系统中去,力求操作准确,仔细;
3.放射性生物样品的制备
根据实验目的和示踪剂的标记放射性同位素的性质制备放射性生物样品,其中放射性同位素的性质是生物样品制备形式的主要依据。若是释放r射线的示踪剂,则样品制备比较容易,只要定量地取出被测物放入井型NaI(TL)晶体内就能测定;若是释放出硬β射线的示踪剂,须将生物样品制成厚度较薄的液体,或将液体铺样后烘干,也可灰化后铺样,放入塑料晶体闪烁仪内测定,或用钟罩型盖一革计数管探测;若标记同位素仅释放软β射线,那么样品应制成液体闪烁样品(详见放射性测量”一章),在液体闪烁计数器内测量。不论采用何种测量方法,都应该对样品作定量采集。对某些放射性分散的样品,应当作适当浓集,如测定组织内蛋白质的放射性,应对蛋白质作提取处理然后制备成相应的测量样品。有些样品需采用灰化法,但灰化法对易挥发的同位素或易挥发的组织样品不合适;
4.放射性样品的测量
测量方法分为绝对测量和相对测量。绝对测量是对样品的实有放射性强度作测量,求出样品中标记同位素的实际衰变率,在作绝对测量时,要纠正一些因素对测量结果的影响,这些因素包括仪器探头对于放射源的相对立体角、射线被探头接收后被计数的几率、反散射、放射源的自吸收影响等等。而相对测量只是在某个固定的探测仪器上作放射性强度的相对测量,不追求它的实际衰变率。在一般的示踪实验中,大多采用相对测量的方法,比较样品间的差异。在相对测量时,要注意保持样品与探测器之间的几何位置固定。几何条件的影响是放射性测量中最重要的影响因素。当2个放射性强度相同的样品在测量中所置的几何位置不一,或样品制备过程造成的几何条件差异,其计数会相差很多,尤其当样品与探头之间距离较近时,两者计数率相差会很大。但是当样品与探头之间相距较远时,由于样品与探头之间形成的相对立体角较小,所以两者计数率的差异会显著减小。在用纸片法测量3H标记物的放射性强度时,要注意纸片在闪烁瓶中的位置,一批样品应该一致,如果是将滤纸剪成圆状作支持物,圆片的直径最好与闪烁瓶底的直径相等,保证滤纸在闪烁瓶内的位置固定。减小几何条件对放射性测量的影响可以从三方面入手:⑴选择探测窗大的探测器,如光电倍增管作探头的探测器;⑵在样品制备时,注意尽量将样品做成点状源,这样当样品的放射性强度较弱时,由于距离探测窗较近而有可能造成的水平位移的影响即可忽略;⑶无论样品距离探测窗远近,样品都应置于探测窗的垂直轴线上,以减少样品与探测窗之间的相对立体角。
(三)放射性去污染和放射性废物处理
放射性实验,无论是每次实验或阶段性实验结束后,都可能有不同程度的放射性污染和放射性废物的出现,因此,在实验结束后,要作去污染处理和放射性废物处理。必要时在实验过程进行中,就要作除污染和清理放射性废物的工作。
在生物化学和分子生物学中的应用
放射性同位素示踪法在生物化学和分子生物学领域应用极为广泛,它为揭示体内和细胞内理化过程的秘密,阐明生命活动的物质基础起了极其重要的作用。近几年来,同位素示踪技术在原基础上又有许多新发展,如双标记和多标记技术,稳定性同位素示踪技术,活化分析,电子显微镜技术,同位素技术与其它新技术相结合等。由于这些技术的发展,使生物化学从静态进入动态,从细胞水平进入分子水平,阐明了一系列重大问题,如遗传密码、细胞膜受体、RNA-DNA逆转录等,使人类对生命基本现象的认识开辟了一条新的途径。下面仅就同位素示踪技术在生物化学和分子生物学中应用的几个主要方面作一介绍。
1.物质代放谢的研究
体内存在着很多种物质,究竟它们之间是如何转变的,如果在研究中应用适当的同位素标记物作示踪剂分析这些物质中同位素含量的变化,即可知道它们之间相互转变的关系,还能分辩出谁是前身物,谁是产物,分析同位素示踪剂存在于物质分子的哪些原子上,可以进1步推断各种物质之间的转变机制。为了研究胆固醇的生物合成及其代谢,采用标记前身物的方法,揭示了胆固醇的生成途径和步骤,实验证明,凡是能在体内转变为乙酰辅酶A的化合物,都可以作为生成胆固醇的原料,从乙酸到胆固醇的全部生物合成过程,至少包括3六步化学反应,在鲨烯与胆固醇之间,就有20个中间物,胆固醇的生物合成途径可简化为:乙酸→甲基二羟戊酸→胆固醇又如在研究肝脏胆固醇的来源时,用放射性同位素标记物3H-胆固醇作静脉注射的示踪实验说明,放射性大部分进入肝脏,再出现在粪中,且甲状腺素能加速这个过程,从而可说明肝脏是处理血浆胆固醇的主要器官,甲状腺能降低血中胆固醇含量的机理,在于它对血浆胆固醇向肝脏转移过程的加速作用;
2.物质转化的研究
物质在机体内相互转化的规律是生命活动中重要的本质内容,在过去的物质转化研究中,一般都采用用离体酶学方法,但是离体酶学方法的研究结果,不一定能代表整体情况,同位素示踪技术的应用,使有关物质转化的实验的周期大大缩短,而且在离体、整体、无细胞体系的情况下都可应用,操作简化,测定灵敏度提高,不仅能定性,还可作定量分析。在阐明核糖苷酸向脱氧核糖核苷酸转化的研究中,采用双标记法,对产物作双标记测量或经化学分离后分别测量其放射性。如在鸟嘌呤核苷酸(GMP)的碱基和核糖上分别都标记上14C,在离体系统中使之参入脱氧鸟嘌呤核苷酸(dGMP),然后将原标记物和产物(被双标记GMP掺入的dGMP)分别进行酸水解和层析分离后,测定它们各自的碱基和戊糖的放射性,结果发现它们的两部分的放射性比值基本相等,从而证明了产物dGMP的戊糖就原标记物GMP的戊糖,而没有别的来源,否则产物dGMP的碱基和核糖的比值一定与原标记物GMP的两部分比值有显著差别。这个实验说明戊糖脱氧是在碱基与戊糖不分记的情况下进行的,从而证明了脱氧核糖核苷酸是由核糖核苷酸直接转化而来的,并不是核糖核苷酸先分解成核糖与碱基,碱基再重新接上脱氧杭核糖。无细胞的示踪实验可以分析物质在细胞内的转化条件,例如以3H-dTTP为前身物作DNA掺入的示踪实验,按一定的实验设计掺入后,测定产物DNA的放射性,作为新合成的DNA的检出指标;
3.动态平衡的研究
阐明生物体内物质处于不断更新的动态平衡之中,是放射性同位素示踪法对生命科学的重大贡献之一,向体内引入适当的同位素标记物,在不同时间测定物质中同位素含量的变化,就能了解该物质在体内的变动情况,定量计算出体内物质的代谢率,计算出物质的更新速度和更新时间等等。机体内的各种物质都在有大小不同的代谢库,代谢库的大小可用同位素稀释法求也;
4.生物样品中微量物质的分析
在放射性同位素示踪技术被应用之前,由于制备样品时的丢失而造成回收率低以及测量灵敏度不高等问题,使得对机体正常功能起很重要作用的微量物质不易被测定。近年来迅速发展、应用愈来愈广泛的放射免疫分析(radioimmunoassay)技术是1种超微量的分析方法,它可测定的物质300多种,其中激素类居多,包括类固醇激素,多肽类激素,非肽类激素,蛋白质物质,环核苷酸,酶,肿瘤相关的抗原,抗体以及病原体,微量药物等其它物质;
5.最近邻序列分析法(Nearestneighbour-sequenceanalysismethod)
放射性同位素示踪技术,是分子生物学研究中的重要手段之一,对蛋白质生物合成的研究,从DNA复制、RNA转录到蛋白质翻译均起了很大的作用。最近邻序列分析法应用同位素示踪技术结合酶切理论和统计学理论,研究证实了DNA分子中碱基排列规律,在体外作合成DNA的实验:分四批进行,每批用1种不同的32P标记脱氧核苷三磷酸,32P标记在戊糖5'C的位置上,在完全条件下合成后,用特定的酶打开5'C-P键,使原碱基上通过戊糖5'C相连的32P移到最邻近的另一单核苷酸的3'C上。用最近邻序列分析法首次提出了DNA复制与RNA转录的分子生物学基础,从而建立了分子杂交技术,例如以噬体T2-DNA为模板制成[32P]RNA,取一定量T2-DNA和其它一些DNA加入此[32P]RNA中,经加热使DNA双链打开,并温育,用密度梯度离心或微孔膜分离出DNA-[32P]RNA复合体测其放射性,实验结果只有菌体T2的DNA能与该[32P]RNA形成放射性复合体。从而证明了RNA与DNA模板的碱基呈特殊配对的互补关系,用分子杂交技术还证实了从RNA到DNA的逆转录现象。此外,放射性同位素示踪技术对分子生物学的贡献还表现在:⑴对蛋白质合成过程中3个连续阶段,即肽链的起始、延伸和终止的研究;⑵核酸的分离和纯化;⑶核酸末端核苷酸分析,序列测定;⑷核酸结构与功能的关系;⑸RNA中的遗传信息如何通过核苷酸的排列顺序向蛋质中氨基酸传递的研究等等。为了更好地应用放射性同位素示踪技术,除了有赖于示踪剂的高质量和核探测器的高灵敏度外,关键都还在于有科学根据的设想和创造性的实验设计以及各种新技术的综合应用。
放射性同位素_放射性同位素 -注意事项
在放射测量过程中,以下几个问题不应忽视:
1.任何测量放射性的计数方法都存在本底问题。所谓本底指被测样品之外的信号输出。因此,在测量到的样品计数率中,要扣除本底计数率,才能获得样品的净计数率,仪器本底越低,测量灵敏度越高,准确度也越高,这在3H标记物的低水平测量中尤为重要。
2.在放射性测量工作中,通常存在着3种误差:①系统误差由于测量仪器本身或测量方法和程度的不合理以及周围环境的影响因素,使测量结果单向偏离而造成的误差。系统误差产生的原因可以找到并能加以克服;②过失误差,由于实验工作者的主观错误造成,是1种无规律可循的误差,但过失误差也是可以避免的;⑶统计误差,由于放射性衰变本身的随机性而导致的无法控制的误差,它是放射性测量误差中主要的、固有的来源。对于放射性测量统计误差,在实际工作中,常通过提高计数效率,增加测量次数(以3 ̄5次为宜)或每个样品做1 ̄两个平行管计数、合理分配测量时间等方法,以获得最小的测量误差。
3.在液体闪烁计数测量中,样品中含有的水份、混入的杂质或带有的等许多因素,都会使得放射能减少,甚至发生能量传递的中断,而导致计数效率下降,即“淬灭”。在样品制备过程中,应避免引起淬灭的因素,如果欲知榈的真正放射量,并进行样品间的相互比较,就需作淬灭校正,将cpm值换算成dpm值。常用的淬灭校正方法有稀释法、内标准法、道比法、外标准道比法等等。但是最为关键是在样品和测量过程中,尽可能地将淬灭因素减低到最小的程度.
本文标题:放射性同位素-放射性同位素与射线装置安全和防护条例61阅读| 精彩专题| 最新文章| 热门文章| 苏ICP备13036349号-1