一 : 哥德巴赫猜想里的1+1是什么意思?
哥德巴赫猜想里的1+1是什么意思?
哥德巴赫猜想分二重和三重,二重是每个不小于6的偶数都可以表示为两个奇素数(素数又称质数)之和,三重是每个不小于9的奇数都可以表示为三个奇素数之和.通常说的哥德巴赫猜想指前者.但是这个猜想至今没有人能够将它证明,这个猜想的证明思路是将不小于6的偶数表示为m个素数的乘积+n个素数的乘积之和,现在要证明的就是m=1,n=1时猜想成立,也就是你所说的1+1.
1966年,中国的陈景润证明了 “1 + 2 ”,这个是迄今为止,世人所知的最接近的答案了,也是咱国人的骄傲.我最近没事也在想这个问题,全当锻炼脑力了,呵呵.
二 : 哥德巴赫猜想是什么?
哥德巴赫猜想是什么?
世界近代三大数学难题之一。哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。
公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。
(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。
这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。
从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠"。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了"哥德巴赫"。
目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen’s Theorem) ? "任何充份大的偶数都是一个质数与一个自然数之和,而後者仅仅是两个质数的乘积。" 通常都简称这个结果为大偶数可表示为 "1 + 2 "的形式。
在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称"s + t "问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了 "9 + 9 "。
1924年,德国的拉特马赫(Rademacher)证明了"7 + 7 "。
1932年,英国的埃斯特曼(Estermann)证明了 "6 + 6 "。
1937年,意大利的蕾西(Ricei)先後证明了"5 + 7 ", "4 + 9 ", "3 + 15 "和"2 + 366 "。
1938年,苏联的布赫 夕太勃(Byxwrao)证明了"5 + 5 "。
1940年,苏联的布赫 夕太勃(Byxwrao)证明了 "4 + 4 "。
1948年,匈牙利的瑞尼(Renyi)证明了"1 + c ",其中c是一很大的自然 数。
1956年,中国的王元证明了 "3 + 4 "。
1957年,中国的王元先後证明了 "3 + 3 "和 "2 + 3 "。
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 "1 + 5 ", 中国的王元证明了"1 + 4 "。
1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了"1 + 3 "。
1966年,中国的陈景润证明了 "1 + 2 "。
最终会由谁攻克 "1 + 1 "这个难题呢?现在还没法预测。
三 : 哥德巴贺猜想是什么?是证明11为什么等于2吗?
哥德巴贺猜想是什么?是证明11为什么等于2吗?
当然不是。
4=2+2, 6=3+3,8=5+3,
10=7+3,12=7+5,14=11+3,……
那么,是不是所有的大于2的偶数,都可以表示为2个素数的呢?
这个问题是德国数学家哥德巴赫(C Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想。同年6月30日,欧拉在回信中认为这个猜想可能是真的,但他无法证明。现在,哥德巴赫猜想的一般提法是:每个大于等于6的偶数,都可表示为2个奇素数之和;每个大于等于9的奇数,都可表示为3个奇素数之和。其实,后1个命题就是前1个命题的推论。
哥德巴赫猜想貌似简单,要证明它却着实不易,成为数学中1个著名的难题。18、19世纪,所有的数论专家对这个猜想的证明都没有作出实质性的推进,直到20世纪才有所突破。1937年苏联数学家维诺格拉多夫(и M Bиногралов,1891-1983),用他创造的"三角和"方法,证明了"任何大奇数都可表示为3个素数之和"。不过,维诺格拉多夫的所谓大奇数要求大得出奇,与哥德巴赫猜想的要求仍相距甚远。
直接证明哥德巴赫猜想不行,人们采取了迂回战术,就是先考虑把偶数表为两数之和,而每1个数又是若干素数之积。如果把命题"每1个大偶数可以表示成为1个素因子个数不超过a个的数与另1个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"成立。从20世纪20年代起,外国和中国的一些数学家先后证明了"9+9""2十3""1+5""l+4"等命题。
1966年,我国年轻的数学家陈景润,在经过多年潜心研究之后,成功地证明了"1+2",也就是"任何1个大偶数都可以表示成1个素数与另1个素因子不超过两个的数之和"。这是迄今为止,这一研究领域最佳的成果,距摘取这颗"数学王冠上的明珠"仅1步之遥,在世界数学界引起了轰动。"1+2"也被誉为陈氏定理。
四 : 哥德巴赫猜想有什么用?
61阅读| 精彩专题| 最新文章| 热门文章| 苏ICP备13036349号-1