61阅读

北京和上海都有某种仪器-北京和上海都有某种仪器可供外地使用,北京可提供10台,上海可供4台,重庆要8台,武汉要6台,.

发布时间:2018-04-14 所属栏目:线性方程组实际应用题

一 : 北京和上海都有某种仪器可供外地使用,北京可提供10台,上海可供4台,重庆要8台,武汉要6台,.

北京和上海都有某种仪器可供外地使用,北京可提供10台,上海可供4台,重庆要8台,武汉要6台,.

北京和上海都有某种仪器可供外地使用,其中北京可提供10台,上海可提供4台.已知重庆需要8台,武汉需要6台,从北京.上海将仪器运往重庆.武汉的费用如下:有关部门计划用7600元运送这批仪器,请你设计一种方案,使武汉.重庆能得到所需的仪器,而且运费正好够用.

费用:北京到武汉400元;到重庆800元.

上海到武汉300元素;到重庆500元.

用方程,只有x的方程

北京和上海都有某种仪器可供外地使用,北京可提供10台,上海可供4台,重庆要8台,武汉要6台,.的参考答案

设北京运往武汉x台,上海运武汉y台,由题意得

x+y=6

400x+800(10-x)+300y+500(4-y)=8000

x=4,*/2=2

即北京运往武汉4台,运往重庆6台,上海运往武汉2台,运往重庆2台.从运费表中可以看出北京运往重庆的单位运费最高,考虑运费减少北京运往重庆的台数,如北京运往重庆的台数减少为5台,此时,总运费为

400×5+800×5+300+500×3=7800,比原来降低了200元,还可以作适当调整,继续降低总运费

二 : 初一难题1,北京和上海都有某种仪器可供外地使用,其中北京可提供1

初一难题

1,北京和上海都有某种仪器可供外地使用,其中北京可提供10台,上海可提供4 台,已知重庆需6台,从北京,上海将仪器运往重庆,武汉的费用如下表(1)所示.运费表(单位:元/台)终点 武汉 重庆起点北京 400 800上海 300 500终点 武汉 重庆起点北京 上海(1)如果从北京运往武汉的仪器为X台,在表(2)中填上运往各地的数量.(2)若有关部门计划耗资8000元运送使武汉.重庆不仅能得到所需的仪器,而且运费刚好有完,请列出关于X的方程(不解方程)


题目是否为:已知重庆需8台,武汉需6台

(1)

单位:台

终点 武汉 重庆

起点

北京 x 10-x

上海 6-x 4-(6-X)

(2)

设从北京运到武汉的为X台,则北京运到重庆的为(10-X)台

上海运到武汉的为6-X台,上海运到重庆的为[4-(6-X)]台

得到公式如下:

400X+800*(10-X)+300*(6-X)+500*[4-(6-X)]=8000

三 : 七年级数学应用题北京和上海都有某种仪器可供外地使用,其中北京可提

七年级数学应用题

北京和上海都有某种仪器可供外地使用,其中北京可提供10台,上海可提供4台。已知重庆需要8台,武汉需要6台,从北京、上海将仪器运往重庆、武汉的费用如下表所示。有关部门计划用8000元运送这些仪器,请你一种方案,使武汉、重庆能够得到所需的仪器,而且运费正好够用。


解:设北京和上海有分别x,y台运向重庆

所以x+y=8;

400(10-x)+300(4-y)+800x+500y=8000;

即:400x+200y=2800

答案:x=6;y=2;

即,从北京运6台到重庆,4台到武汉;

从上海运2台到重庆,2台到武汉。

四 : 列方程(组)解实际问题:北京和上海都有某种

列方程(组)解实际问题:
北京和上海都有某种仪器可供外地使用,其中北京可提供10台,上海可提供4台,已知重庆需要8台,武汉需要6台.从上海、北京将仪器运往重庆、武汉的费用如表所示:
运费表(单位:元/台)
终点
起点
武汉重庆
北京400800
上海300500
(1)有关部门计划用8000元运送这些仪器,请你设计一种方案,使武汉,重庆能得到所需的仪器,而且运费正好够用.
(2)你能否修改方案,降低整个费用?若能,最低运费为多少元?
题型:解答题难度:中档来源:不详

(1)设北京运往武汉x台,则北京运往重庆(10-x)台,上海运往武汉(6-x)台,上海运往重庆(x-2)台.
400x+800×(10-x)+300×(6-x)+500×(x-2)=8000,
解得x=4,
∴10-x=6,
6-x=2,
x-2=2.
答:北京运往武汉4台,则北京运往重庆6台,上海运往武汉2台,上海运往重庆2台.

(2)设北京到武汉x台,
运费为:
W=400x+800×(10-x)+300×(6-x)+500×(x-2),
=-200x+8800,
由题意:2≤x≤6,
所以:当x=6时,费用最低,为7600,
所以:从北京运往武汉6台;运往重庆4台;
从上海运往重庆4台,最低运费7600元.


考点:

考点名称:二元一次方程组的应用二元一次方程组应用中常见的相等关系:
1. 行程问题(匀速运动)
基本关系:s=vt
①相遇问题(同时出发):
确定行程过程中的位置路程
相遇路程÷速度和=相遇时间
相遇路程÷相遇时间= 速度和
相遇问题(直线)
甲的路程+乙的路程=总路程
相遇问题(环形)
甲的路程 +乙的路程=环形周长
②追及问题(同时出发):
追及时间=路程差÷速度差
速度差=路程差÷追及时间
追及时间×速度差=路程差
追及问题(直线)
距离差=追者路程-被追者路程=速度差X追及时间
追及问题(环形)
快的路程-慢的路程=曲线的周长
③水中航行
顺水行程=(船速+水速)×顺水时间
逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速
逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2
水速:(顺水速度-逆水速度)÷2

2.配料问题:溶质=溶液×浓度
溶液=溶质+溶剂

3.增长率问题

4.工程问题
基本关系:工作量=工作效率×工作时间(常把工作量看成单位“1”)。

5.几何问题
①常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
②注意语言与解析式的互化:
如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……
又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。
③注意从语言叙述中写出相等关系:
如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。
④注意单位换算:
如,“小时”“分钟”的换算;s、v、t单位的一致等。

二元一次方程组的应用:
列方程(组)解应用题是中学数学联系实际的一个重要方面。
其具体步骤是:
⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答案。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

考点名称:一元一次不等式组的应用应用:列一元一次不等式组解决实际问题。

一元一次不等式的应用主要涉及问题:
1.分配问题:
例:一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。

2.积分问题:
例:某次数学测验共20道题(满分100分)。评分办法是:答对1道给5分,答错1道扣2分,不答不给分。某学生有1道未答。那么他至少答对几道题才能及格?

3.比较问题:
例:某校校长暑假将带领该校“三好学生”去三峡旅游,甲旅行社说:如果校长买全票一张,则其余学生可享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠。已知两家旅行社的全票价都是240元,至少要多少名学生选甲旅行社比较好?

4.行程问题:
例:抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?

5.车费问题:
例:出租汽车起价是10元(即行驶路程在5km以内需付10元车费),达到或超过5km后,每增加1km加价1.2元(不足1km部分按1km计),现在某人乘这种出租 汽车从甲地到乙地支付车费17.2元,从甲地到乙地的路程超过多少km?

6.浓度问题:
例:在1千克含有40克食盐的海水中,在加入食盐,使他成为浓度不底于20%的食盐水,问:至少加入多少食盐?

7.增减问题:
例:一根长20cm的弹簧,一端固定,另一端挂物体。在弹簧伸长后的长度不超过30cm的限度内,每挂1㎏质量的物体,弹簧伸长0.5cm.求弹簧所挂物体的最大质量是多少?

8.销售问题:
例:商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。
(1)试求该商品的进价和第一次的售价;
(2)为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元?

一元一次不等式组解应用题的一般步骤为:
列不等式组解决实际问题的步骤与列一元一次不等式解应用题的步骤相类似,所不同的是,前者需寻求的不等关系往往不止一个,而后者只需找出一个不等关系即可。
(1)审:认真审题,分清已知量、未知量及其关系,找出题中的不等关系,要抓住题中的关键词语,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等;
(2)设:设出适当的未知数;
(3)列:根据题中的不等关系列出不等式组;
(4)解:解出所列不等式组的解集;
(5)答:写出答案,从不等式组的解集中找出符合题意的答案,并检验是否符合题意。
本文标题:北京和上海都有某种仪器-北京和上海都有某种仪器可供外地使用,北京可提供10台,上海可供4台,重庆要8台,武汉要6台,.
本文地址: http://www.61k.com/1169911.html

61阅读| 精彩专题| 最新文章| 热门文章| 苏ICP备13036349号-1