61阅读

马腾飞-马腾飞

发布时间:2017-08-16 所属栏目:马腾飞

一 : 马腾飞

文献

1.XM55-1型钢坯修磨机

【作者单位】:北京市冶金设备自动化研究所;北京市冶金设备自动化研究所

【DOI】:cnki:ISSN:1001-196X.0.1984-01-015

【正文快照】:

在现代化钢铁厂中生产优质钢时,二为保证产品质量,精轧前必须修磨钢坯,消除某些合金钢轧坯和锻坯表面的脱碳层和缺陷。(www.61k.com)198.0年我们研究所接受了研制一台钢坯修磨机的任务,子1982牟完成研制兮经过试验和生产考核,它适于中小型钢坯的扒皮修磨。修磨的坯料表面光滑平坦,

2.大型钢坯修磨机恒力加载系统神经网络自适应控制的研究

作者 沙道航; 葛思华; 何钺;

作者单位 西安交通大学机械工程学院机电教研室;

文献出处 中国科学院上海冶金研究所; 材料物理与化学(专业) 博士论文 2000年度 关键词 钢坯修磨; 力控制系统; 神经网络; 自适应控制; 非线性系统;

3.高效重负载钢坯修磨机砂轮电液加载系统

【摘要】:导出了一种基于Popov超稳定性理论的模型跟随自适应控制方法,并应用于高效重负载钢坯修磨机砂轮电液加载系统。实验结果表明:采用该方法显著降低了由于砂轮位置干扰引起的加载力的变化。

【作者单位】: 浙江大学 浙江大学 西安交通大学 西安交通大学

【关键词】: 钢坯修磨 自适应控制 控制系统

【分类号】:TP273

【DOI】:CNKI:SUN:JCYY.0.1997-03-013

【正文快照】:

0前言众所周知,采用液压加载的力控制系统,由于负载位置的干扰而产生多余力是力控制系统固有的特性。此外,对于钢坯修磨机砂轮加载系统,负载位置的干扰还使加载机构的惯性力、重力以及摩擦力对砂轮负载有很大的影响。位置的变化还带来了加载系统参数的实时变化

4.钢坯修磨 恒力磨削

【摘要】: 钢坯修磨是钢坯进行轧制之前,采用砂轮磨削技术,清除钢坯表面的氧化皮缺陷和裂纹,以保证钢材成品最终质量和提高成才率的必备条件。由于钢坯表面不平,因此在修磨过程中,为了使砂轮能够适应钢坯表面起伏不平的变化,要求钢坯修磨机砂轮加载系统具有良好的跟随性。目前,钢坯修磨机存在的主要问题之一就是,砂轮加载系统的跟随性较差,远不能满足高性能修磨机的要求。而且目前,国内大部分修磨机仍采用落后的压下加载技术。本文对重载钢坯修磨机砂轮加载系统进行了深入的理论研究和试验研究。主要工

马腾飞 马腾飞

作和结论如下: 1.对钢坯修磨机砂轮加载机构进行了受力分析。[www.61k.com]分析表明该加载机构具有严重的非线性和时变特性。讨论了影响砂轮修磨压力变化的因素,提出了稳定修磨压力的方法。 2.对砂轮加载系统的几种电液加载方式进行了比较,首次在钢坯修磨机上采用比例三通减压阀加载系统,对系统的动态特性进行了深入的理论分析。建立了这加载系统的数学模型,同时,还 进行了大量的仿真研究和试验研究,一提出了一改善跟随特性的措 施。为钢坯修磨机砂轮加载系统提供了一种新的加载方式。

【关键词】:钢坯修磨 恒力磨削 电液比例系统 三通比例减压阀

【分类号】:TG580

【DOI】:CNKI:CDMD:2.2003.093979

5.神经网络非线性自适应控制方法

作者】 沙道航; 葛思华; 何钺;

【机构】 西安交通大学机械工程学院机电教研室;

【摘要】 首次将神经网络非线性自适应控制方法应用于钢坯修磨机恒力加载系统, 显著改善了系统的跟随特性。试验结果表明:该方法不仅能够提高系统输入阶跃的响应时间,而且对系统未知的外加干扰、系统参数时变特性和非线性有较强的自适应能力。 更多还原

【关键词】 钢坯修磨; 力控制系统; 神经网络; 自适应控制; 非线性系统;

6.TGM50—1型钢坯修磨机

【作者】 贾晓刚;

【作者单位】 太钢初轧厂;

【文献出处】冶金设备 , Metallurgical Equipment, 编辑部邮箱 1986年 03期

期刊荣誉:ASPT来源刊 中国期刊方阵 CJFD收录刊

【中文关键词】磨头; 修磨机; 砂轮座;

【摘要】一、前言 钢坯修磨机是钢铁厂中处理钢坯表面缺陷的装置,是重要的冶金设备之一。 由于不锈钢坯的表面常存在折迭、脱碳层、飞边、裂纹和氧化铁皮等,必须在加热前使用钢坯修磨机把这些缺陷去掉,以保证产品的质量。使用砂轮修磨能在同一台设备上用于金属表面缺陷层的剥皮和局部清除缺陷,以最小的金属损耗对轧材弯曲度仿形,得到高质量的表面,并能降低消耗和合理改善不锈钢的质量。砂轮修磨具有效率高、质量好、成本低,易于自动化和组成自动线进行高效率生产等优点。因此,在现代化的不锈钢生产中,在精轧前都要修磨板坯,清除缺陷以保证产品质量,业已成为不锈钢产品工艺中必不可少的环节

【DOI】 CNKI:SUN:YJSB.0.1986-03-005

7.钢坯修磨机磨头压下系统仿真及试验研究

关键词: 钢坯修磨机 液压压下系统 AMESim 复合控制

中文文摘信息 介绍了钢坯修磨机磨头液压压下系统的工作原理,提出压下过程中采用位置、压力复合控制,提高了工作效率。针对砂轮位置扰动引起的多余惯性力,及其磨头自身重力、摩擦力和惯性力对修磨力的影响,采用三通比例减压阀开环控制压力,系统压力波

马腾飞 马腾飞

动较大的问题,提出在三通比例减压阀控制压力的基础上叠加闭环控制的方法进行改进,实现了对磨头压下力的精确控制,使系统在位置扰动下能够保持良好的跟随特性,满足了性能要求,利用AMESim软件对系统进行了建模和仿真研究,确定了控制器参数,用试验验证了仿真结果,并已成功应用于国产板坯修磨机上。(www.61k.com]

第一作者 宁振雷

刊名:液压气动与密封

记录标识 KJ66bc2de4-4ffe-4df6-b7b4-9e3ce675068f

8.大型钢坯修磨机砂轮加载系统模型跟随自适应控制的研究

作者:沙道航

作者单位:西安交通大学机械工程

文献来源:西安工业学院学报

文摘:首次将模型跟随自适应控制新方法应用于大型钢坯修磨机砂轮加载系统的研究。实时控制试验结果表明:该方法不仅提高了系统对输入的阶跃响应,而且还显著地改善了加载系统的跟随特性。参7

顺序号:9607353

9.大型钢坯修磨机恒力加载系统神经网络自适应控制的研究

【摘要】:首次将神经网络非线性自适应控制方法应用于钢坯修磨机恒力加载系统, 显著改善了系统的跟随特性。试验结果表明:该方法不仅能够提高系统输入阶跃的响应时间,而且对系统未知的外加干扰、系统参数时变特性和非线性有较强的自适应能力。

【作者单位】:西安交通大学机械工程学院机电教研室 西安交通大学机械工程学院机电教研室 西安交通大学机械工程学院机电教研室

【关键词】:钢坯修磨 力控制系统 神经网络 自适应控制 非线性系统

【分类号】:TP273.2

10.钢坯修磨机砂轮主轴液压调速系统动静态特性分析

作者 沙道航; 葛思华; 何钺; 丁崇生;

作者单位 西安工业学院; 西安交通大学;

文献出处 中国科学院上海冶金研究所; 材料物理与化学(专业) 博士论文 2000年度 关键词 转速调节; 电液比例控制; 静液传动;

马腾飞 马腾飞

11.电液比例控制转速调节泵-马达系统钢坯修磨砂轮转速电液比例变量泵马达调节系统的研究

作者:沙道航[1] 李新忠[2]

关键词:泵-马达系统 转速调节 钢坯修磨 电液比例控制

期刊名称:液压气动与密封.1997(4).-21-23

机构:[1]浙江大学 [2]西安交通大学

摘要 钢坯修磨砂轮转速电液比例变量泵马达调节系统的研究第六图书馆本文介绍了钢坯修磨砂轮转速电泫比例变量泵马达调节系统,分析了其静态特性和控制器设计。(www.61k.com]本文介绍了钢坯修磨砂轮转速电泫比例变量泵马达调节系统,分析了其静态特性和控制器设计。

12.修磨机在特钢表面缺陷处理中的应用

期刊 QCode : tgjs200703015

介绍了修磨机在特钢表面缺陷清理方面的作用和使用过程中遇到的问题,以及处理这些问题的方法.

作者: 占磊,

关键词: 修磨机, 表面缺陷, 修磨效率,

<特钢技术>>2007年 第13卷 第03期

13.钢坯修磨机液压加载系统动态特性的研究

沙道航[1] 葛思华[2]

[1]浙江大学 [2]西安交通大学

摘 要:

对MG-H型系列大型钢坯修磨机液压加载系统的动态特性进行了较深入研究。建立了加载系统的数学模型,分析了加载系统的动态刚度,考察了加载机构自重及库仑摩擦力对加载系统动态刚度的影响,提出了提高或改善加载系统动态特性的措施,给出了大量的仿真与试验研究结果。

14.钢坯修磨机电液伺服加载系统跟随特性的研究

作者 沙道航; 杨华勇; 葛思华; 何钺;

作者单位 浙江大学; 西安交通大学;

文献出处 中国科学院上海冶金研究所; 材料物理与化学(专业) 博士论文 2000年度

马腾飞 马腾飞

关键词 钢坯修磨; 伺服控制; 动态刚度

15.金属切除率强力磨削影响钢坯修磨因素初探

作者:沙道航 葛思华

关键词:强力磨削 钢坯 修磨 金属切除率

期刊名称:西安工业学院学报.1994,14(2).-110-114

摘要 影响钢坯修磨因素初探第六图书馆强力磨削钢坯修磨金属切除率西安工业学院学报沙道航葛思华不详1994第六图书馆

16.并联式钢坯修磨机器人动力学及轨迹规划研究

王启明,胡明,郭成,蔡光起

东北大学机械工程与自动化学院

摘要: 介绍了一种新型的并联式钢坯修磨机器人机构,并对其运动学和动力学进行了分析和计算,给出了它们的显示解.在对修磨轨迹的规划中,采用四次多项式曲线和回旋曲线.最后结合一个实际例子进行了计算机仿真

关键词: 并联机器人 动力学 轨迹规划 计算机仿真

17.钢坯修磨一种并联机器人钢坯局部缺陷自动修磨系统

作者:胡明 蔡光起

期刊名称:金刚石与磨料磨具工程.1998(5).-20-22

关键词:钢坯修磨 并联机器人 机器人

期刊名称:金刚石与磨料磨具工程.1998(5).-20-22

摘要 一种并联机器人钢坯局部缺陷自动修磨系统第六图书馆钢坯缺陷修磨是保证轧材质量的重要工序

18.我国自行设计的钢坯修磨机研制成功

陈黎明

【摘要】: 我国自己设计的 YLMI——1型钢坯修磨机,最近由苏州冶金机械厂,东北工学院、上钢五厂等单位联合研制成功。[www.61k.com]八月二十日至二十二日,冶金部在苏州冶金机械厂召开现场会,对钢坯修磨机试验机组予以肯定。钢坯修磨作业是提高钢材质量的重要关键,也是当前国内各特殊钢厂迫切需要解决的一项工艺课题。我国长期以来,基本上依靠人工用手提砂轮修磨钢坯,生产效率低,质量难保证,而且环境污染严重。过去,我国曾从国外引进过一些钢

马腾飞 马腾飞

坯修磨设备,由于我国钢坯短,外形不规范,不太适用。[www.61k.com]

【关键词】:钢坯修磨 冶金机械 研制成功 试验机 生产效率 工学院 苏州 砂轮 冶金部 工艺课

【DOI】:CNKI:SUN:YAJI.0.1981-01-009

【正文快照】:我国自己设计的YLM工—1型钢坯修磨机,最近由苏州冶金机械!-上钢五厂等单位联气研掣应功东马匕工学院、。八月二十日至二十二日,冶金部在洲州冶金机械厂召开现场会,对钢坯修磨机试验机组子以肯定。 钢坯修磨作业是提篙钢材成髦的重要失键,也是当前国内各特殊姗厂迫切需要解决

19.plc闭环控制钢坯修磨机磨头压下系统试验研究

关键字:系统 试验 研究 plc 闭环控制 钢坯 压下

plc闭环控制钢坯修磨机磨头压下系统试验研究 收藏此文

全部作者 : 宁振雷 权龙

第一作者单位 : 太原理工大学机械电子工程研究所

论文摘要 : 针对砂轮位置扰动引起的多余惯性力,及其磨头自身重力、摩擦力和惯性力对系统输出力的影响,采用开环控制,系统压力波动较大的问题,提出在三通比例减压阀控制压力的基础上叠加闭环控制的方法进行改进。研制了以可编程控制器(plc)为核心的磨头压下控制系统,压下过程中采用位置、压力复合控制,提高了工作效率。引入带积分分离的增量式pid控制器,闭环控制压力,实现了对磨头压下力的精确控制,使该系统在位置扰动下能够保持良好的跟随特性,满足了性能要求,并已成功应用于国产mg215-h5板坯修磨机上。 关键词 : 钢坯修磨机;液压压下系统;plc;闭环控制;pid

20.大型钢坯修磨机恒力加载系统跟随特性的研究

论文作者 沙道航著

关键词 钢坯修模 恒力磨削

【中文摘要】钢坯修磨是在钢坯进行轧制之前,采用砂轮磨削技术,清除钢坯表面的氧化皮缺陷和裂纹,以保证钢材成品最终质量和提高成材率的必不可少的重要工序。恒力磨削是保证钢坯修磨后的表面质量和提高成材率的必备条件。由于钢坯表面不平,因此在修磨过程中,为了使砂轮能够适应钢坯表面起伏不平的变化

外文翻译

Hydraulic System

There are only three basic methods of transmitting power:Electrical,mechanical.and fluid power.Most applications actually use a combination of the

马腾飞 马腾飞

three methods to obtain the most efficient overall system.To properly determine which principle method to use。(www.61k.com)it is important to know the salient features of each type.For example,fluid systems call transmit power more economically Over greater distances than Can mechanical types.However。fluid systems are restricted to shorter distances than are electrical systems.

Hydraulic power transmission system ale concerned with the generation, modulation, and control of pressure and flow and ,and in general such systems include:

1.Pumps which convert available power from the prime mover to hydraulic power at the actuator.

2.Valves which control the direction of pump--flow,the level of power produced,and the amount of fluid一一flow to the actuators.The power level is determined by controlling both the flow and pressure level.

3.Actuators which convert hydraulic power to usable mechanical power Output at the point required.

4.The medium,which is a liquid,provides rigid transmission and control as well as 1ubrication of component s,sealing in valves.and cooling of the system.

5.Connectors which link the various system components,provide power conductors for the fluid under pressure,and fluid flow return to tank(reservoir). .

6、Fluid storage and conditioning equipment which ensure sufficient quality and quantity as well as cooling of the fluid.

7、pneumatics systems required a lubricator to inject。a very fine mist of oil into the air discharging from the pressure regulator.This prevents wear of the closely fitting moving parts of pneumatic

Hydraulic systems ale used in industrial applications such as stamping presses,steel mills,and general manufacturing,agricultural machines,mining industry,aviation,space technology,deep—sea exploration, transportation,marine technology,and offshore gas and petroleum exploration.In short,very few people get through a day of their 1ives without somehow benefiting from the technology of hydraulics2.

The principle of electrical-discharge machining also called electro is or spark-erosion machining, is based on the erosion of metals by spark discharges. We know that when two current-conduct in wires are allowed to touch each other, an arc is produced. If we look closely at the point of contact between the two wires, we note

马腾飞 马腾飞

that a small portion of the metal has been eroded away, leaving a small crater.

The basic EDM system consists of a shape tool and the workpiece, connected to a dc power supply and placed in a dielectric fluid this is one of the most widely used machining processes, particularly for die-sinking operations when the potential difference between the tool and the work piece is sufficiently high, a transient spark discharges through the fluid, removing a very small amount of metal from the work piece surface.

The capacitor discharge is repeated at rates of between 50,with voltages usually ranging between 50vand 380v and currents from 0.1A to 500A.

Mechanical control includes cams and governors. Although they have been used for the control of very complex machines, to be cost effectively, today they are used for simple and fixed-cycle task control. Some automated machines, such as screw machines, still use cam-based control. Mechanical control is difficult to manufacture and is subject to wear.

Pneumatic control is still very popular for certain applications. It uses compressed air, valves, and switchs to construct simple control logic, but is easily slow. Because standard compaonents are used to construct the logic, it is easier to build than a mechanical control . Pneumatic control parts are subject to wear.

As does a mechanical control, an electromechanical control uses switches, relays, times counters, and so on, to construct logic, it is faster and more flexible. The controllers using electromechanical control are called relay devices.

The values in the express the relative tool distance from the home position. This distance is shown in the relative or incremental coordinates, U and W.

when reading the values in the not possible to know directly how far the tool is from the part origin. Just how far it is from the home position. mounted on exhaust ports of air valves and actuators to reduce noise and prevent operating personnel from possible injury resulting not only from exposure to noise but also from high—speed airborne particles.The sign of the coordinates is zero or negative because the tool cannot move farther than the machine origin . thus at present , the values are zero so the tool is at the home position. The values in the are normally used when setting up the tools in order to find the real tool distances from the part origin.

The values in the absolute position express the absolute tool distance from the part origin. This distance is shown in shown in absolute coordinates, x and z .the sign may be positive or negative, depending on the quadrants in which the tool is moving.

马腾飞 马腾飞

because of the compressibility of air,

it is impossible to obtain precise controlled actuator velocities with pneumatic systems.also,precise positioning control is not obtainable.While pneumatic pressures are quite so far is to good. This is an important piece of information for the operator when maching, since any value in the absolute position is directly related to the part.

The secret of hydraulic system’s SUCCESS and widespread use is its versatility and manageability.Fluid power is not hindered by the geometry operations when the potential difference between the tool and the work piece is sufficiently high, a transient spark discharges through the fluid, removing a very small amount of metal from the work piece of the machine as is the ease in mechanical systems.Also,power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical 1imitations of materials as are the electrical systems.For example,the performance of an electromagnet is limited by The saturation limit of steel.On the other hand,the power limit of fluid systems is 1imited only by the strength capacity of the material.

In the express the relative tool distance from the home position. This distance is shown in the relative or incremental coordinates, U and W. when reading the values in the not possible to know directly how far the tool is from the part origin.

Just how far it is from the home position. The sign of the coordinates is zero or negative because the tool cannot move farther than the machine origin . thus at present , the values are zero so the tool is at the home position. The values in the are normally used when setting up the tools in order to find the real tool distances from the part origin.

Industry is going to depend more and more on automation in order to increase productivity.This includes remote and direct control of production operations,manufacturing processes。(www.61k.com]and materials handling.

Fluid power is the muscle of automation because of advantages in the following four major categories.

1.Ease and accuracy of contr01.By the use of Simple levers and push but tons,the operator of a flu id power system Call readily start,stop,speed up or slow down,and position forces which provide any desired horsepower With tolerances as precise as one ten—thousandth Of an inch.Fig.13—1 shows a fluid power system which allows all aircraft pilot to raise and lower his landing gear.When the pi lot moves a

马腾飞 马腾飞

small contr01 valve in one direction,oil under pressure flows to one end of the cylinder to lower the landing gear.To retract the landing gear,the pilot

moves the valve lever in the opposite direction,a110wlng 0il to flow into the other end of the cylinder.

2.Multiplication of force. A fluid power system(without using cumbersome gears,pulleys,and levers)Can multiply forces Simply and efficiently from a fraction of an ounce to several hundred tons of output.

3.Constant force or torque.Only fluid power systems are capable of providing constant force or torque regardless of speed changes.This is accomplished whether the work output moves a few inches per hour,several hundred inches per minute,a few revolutions per hour.or thousands of

revolutions per minute.

4.Simplicity,safety,economy.general,fluid power systems use fewer moving parts than

comparable mechanical or electrical systems.

Thus,they ale simpler to maintain and operate.This,in turn,maximizes safety,compactness,and reliability.For example,a new power steering contr01 designed has made all other kinds of power systems obsolete on many

off—highway vehicles.The Steering unit consists of a manually operated directional control valve and meter in a single body.transportation,marine technology,and offshore gas and petroleum exploration.In short,very few people get through a day of their 1ives without somehow benefiting from the technology of hydraulics2.Because the steering unit is fully fluid 1inked,mechanical linkages,universal joints。[www.61k.com]bearings,reduction gears,etc.are eliminated.This provides a simple,compact system.In addition,very little input torque is required to produce the control needed for the toughest applications.This is important where 1imitations of control space require a small steering wheel and it becomes necessary to reduce operator fatigue.

There are several types of shaft couplings; their characteristics depend on the prupose for which they are used. If an exceptionally long shaft is required for a line shaft in the manufacturing plant or a propeller shaft on ship, it is made in sections that are coupled together with rigid couplings.

Additional benefits of fluid power systems include instantly reversible motion。automatic.protection against overloads,and infinitely variable speed contr01.Fluid power systems also have the highest horsepower per weight rati0 of any known power

马腾飞 马腾飞

source.In spite of al 1 these highly desirable features of fluid power,it is not a panacea for all power transmission

problems.work revolves as the table moves along the ways, a helical or spiral cut is produced; as shown in milling-cutters, helical gears, twist drills and similar worm are produced in this way. The milling of such items requires a particular relationship between the motions of the dividing head and associated gear train, to control the distance the worm will travel while making one complete revolution. Before the helix can be machined the lead and angle of helix are twist drills and similar worm are produced in this way. The milling of such items requires a particular relationship between the motions of the dividing head and associated gear train, to control the distance the worm will travel while making one complete revolution. Hydraulic oil s are messy.and leakage is impossible to completely eliminate.Also,most hydraulic oil s Carl cause fires if an oil 1eak occur in an area of hot equipment.

Pneumatic System

Pneumatic systems use pressurized gases to transmit and control power.As the name implies,pneumatic systems typically use air(rather than some other gas)as the fluid medium because air is a safe,low cost,and readily available fluid.It is particularly safe in environment s where an e1 electrical spark could ignite leaks from system component s.

Worm wheel are similar to bevel gears and are generally used to connect skew shafts transmitting high velocity rations. The worm wheel give line contact between mating teeth unlike a point contact in the case of bevel gears. This improves the load carrying capacity of the gear train.

In pneumatic systems compressors are used to compress and supply the necessary quantities of air.Compressors are typically of the piston,vane or Screw type.Basically a compressor.Increase the pressure of a gas by reducing its v01ume as described by the perfect gas 1aws.

In connecting shafts belonging to separate devices(such as an electrical motor and gearbox) precise aligning of the shafts is diffcult and a flexible coupling is used. This coupling connects the shafts is such a way as to minimize the harmful effects of shaft misalignment. Flexible couplings also permit the shafts to defect under their separate systems of loads and to move freely in the axial direction without interfering with one another. Flexible couplings can also serve to reduce the intensity of shock load and vibrations transmitted from one shaft to another.

马腾飞 马腾飞

Pneumatic systems normally use a large centralized air compressor which is considered to be an infinite。[www.61k.com]Air source similar to an electrical system where you merely

plug into an electrical outlet for electricity.In this way,pressurized air can be piped from one source to various 10cations throughout an entire industrial plant.The compressed air car be Piped to each circuit through an air filter to remove contaminants which might harm the closely fitting parts of pneumatic components the such as valve and cylinders.The air then flows through a pressure regulator which reduces the pressure to the desired level for the particular circuit application.Because air is not a good 1ubricant(contains bout 20%oxygen),pneumatics systems required a lubricator to inject。a very fine mist of oil into the air discharging from the pressure regulator.This prevents wear of the closely fitting moving parts of pneumatic components.

Free air from the atmosphere contains varying amounts of moisture.This moisture can be harmful in that it Can wash away lubricants and thus cause excessive wear and corrosion.Hence,in some applications,air driers are needed to remove this undesirable moisture

Since pneumatic systems exhaust directly into the atmosphere,they are capable of generating

Excessive noise.Therefore.mufflers are mounted on exhaust ports of air valves and actuators to reduce noise and prevent operating personnel from possible injury resulting not only from exposure to noise but also from high—speed airborne particles There are several reasons for considering the use of pneumatic systems instead of hydraulic systems.Liquids exhibit greater inertia than do gases.Therefore,in hydraulic systems the weight of oil is a potential problem when accelerating and decelerating actuators and When suddenly opening and closing valves.

Due to Newton law of motion(force equalsmass multiplied by acceleration),the force required to accelerate oil is many times greater than that required to accelerate an equal volume of air.1iquids also exhibit greater viscosity than do gases.This results in larger frictional pressure and power losses.A1SO,since hydraulic systems

use a fluid foreign to the atmosphere,they require special reservoirs and no leak system designs.Pneumatic systems

when the worm spindle of an index head is geared to the lead screw of the milling

马腾飞 马腾飞

machine so that the work revolves as the table moves along the ways, a helical or spiral cut is produced; as shown in milling-cutters, helical gears, twist drills and similar worm are produced in this way. The milling of such items requires a particular relationship between the motions of the dividing head and associated gear train, to control the distance the worm will travel while making one complete revolution. Before the helix can be machined the lead and angle of helix are necessary together with worm diameter.

Use air which is exhausted directly back into the surrounding environment.Generally speaking,pneumatic systems are less expensive than hydraulic systems.

However,because of the compressibility of air,it is impossible to obtain precise controlled actuator velocities with pneumatic systems.also,precise positioning control is not obtainable.While pneumatic pressures are quite 10W due to compressor design limitations(1ess than 250 psi),hydraulic pressures call be as high as 10,000 psi.Thus,hydraulics can be high——power systems。[www.61k.com]whereas pneumatics are confined to low--power applications4.

Industrial applications of pneumatic Systems are growing at a rapid pace.Typical examples include Stamping,drilling,hoist,punching,Clamping,assembling,riveting,materials

handling,and logic controlling operations.

马腾飞 马腾飞

液压与气压系统

液压系统中仅有以下三种基本方法传递动力:电气、机械和流体。(www.61k.com)大多数应用系统实际上是将三种方法组合起来而得到最有效的最全面的系统。为了合理地确定采取哪种方法,重要的是了解各种方法的显著特征。例如液压系统在长距离上比机械系统更能经济地传递动力。然而液压系统与电气系相比,传递动力的距离较短。

液压与气压传动是研究以有压流体为能源介质,来实现各种机械的传动和自动控制的学科.液压传动与气压传动控制方法是基本相同的.

在流动的液体中,因为有一定量的空气,一般溶解5%--6%体积的空气,油液能溶解的空气量与绝对压力成正比,在大气压下正常溶解于油液中的空气。当压力低于大气压时,就成为过饱和状态,在一定温度下,如压力降低到一定值时,过饱和的空气将从油液中分离出来形成气泡。这一压力值为分离压。含有气泡的体积将缩小。

液压动力传递系统涉及电动机、调节装置和压力和流量控制,总的来说,该系统包括:

·泵:将原动机的能力转换成作用在执行部件上的液压能。

·阀:控制泵产生流体的运动方向、产生的功率的大小,以及到达执行部件液体的流量。功率大小取决于对流量和压力大小的控制。

·执行部件:将液压能转换成可用的机械能。

·介质即油液:可进行无压缩传递和控制,同时可以润滑部件,使阀体密封和系统冷却。

·联接件:联接各个系统部件,为压力流体提供功率传输通路,将液体返回油箱(贮油器)。

·油液贮存和调节装置:用来确保提供足够质量和数量并冷却的液体。 液压系统在工业中应用广泛,例如冲压、钢类I:件的磨削及一般加工业、农机、矿业、航天技术、深海勘探、运输、海洋技术,近海天然气和三种油勘探等行业.简而言之,在日常生活中很少有人不从液压技术中得到某种益处。 在液压系统中,除需要液压泵供油和液压执行元件来驱动工作装置外,还要配备一定数量的液压控制阀来对液流的流动方向、压力的高低以及流量的大小进行设想的控制,以满足负载的工作要求。因此,液压控制阀是直接影响液压系统工作过程和工作我的重要元件。

各类液压控制阀虽然形式不同,控制的功能各有所异,但都 具有共性。首先,在结构上,所有的阀都有阀体、阀芯和驱使阀芯动作的元部件等组成。其次,在工作原理上,所有的代的阀口大小,阀进间的压差以及通过阀的流量之间的关

马腾飞 马腾飞

系都是符合孔口流量的公式。(www.61k.com)只是各种阀控制的参数各不相同而已。如压力阀控制的是压力,流量阀控制的是流量等 。

液压系统成功而又广泛使用的秘密在于它的通用性和易操作性。液压动力传递不会像机械系统那样受到机器几何形体的制约,另外,液压系统不会像电气系统那样受到材料物理性能的制约,它对传递功率几乎没有量的限制。例如,一个电磁体的性能受到钢的磁饱和极限的限制,相反,液压系统的功率仅仅受材料强度的限制。

企业为了提高生产率将越来越依靠自动化,这包括远程和直接控制生产操作、加1:过程和¨材料处理等。液压动力之所以成为自动化的重要组成部分,是冈为它有如下主要的四种优点:

1.控制方便精确通过操作一个简单的操纵杆和按钮,液压系统的操作者便能立即起动、停止、加减速和能提供任意功率、位置精度为万分之一英寸的位置控制力。

图13一l是一个使飞机驾驶员升起和落下起落架的液压系统,当飞行员向某方向移动控制阀,压力油流人液压缸的某一腔从而降下起落架。飞行员向相反方向移动控制阀,允许

油液进人液压缸的另一腔来收同起落架。

2.增力一个液压系统(没有使J=}j笨重的齿轮、滑轮利杠杆)能简单有效地将不到

一盎司的力放人产生儿白吨力的输出。

3.恒力或恒扭矩只有液压系统能提供不随速度变化而变化的恒力或恒扭矩,它可

以驱动对象从每小时移动几英寸到每分钟几百英寸.从每小时几转到每分钟几千转。

4.简便、安全、经济总的来说,液压系统比机械或电气系统使用更少的运动部件,冈此,它们运行与维护简便。这使得系统结构紧凑,安全可靠。例如一种用于车辆上的新型动力转向控制装置己淘汰其他类型的转向动力装置,该转向部件中包含有人力操纵方向控制阀和分配器。冈为转向部件是全液压的,没有万向节、轴承、减速齿轮等机械连接,这使得系统简单紧凑。

另外,只需输入很小的扭矩就能产生满足极恶劣工作条件所需的控制力.这对操作空间限制而需要小方向盘的场合很重要,这也是减轻司机疲劳度所必需的。

液压系统的其他优点包括双向运动、过载保护和无级变速控制,在已有的任何动力系统中液压系统亦具有最大的单位质量功率比。

马腾飞 马腾飞

气压系统

气压系统是用压力气体传递和控制动力,正如名称所表明的那样,气压系统通常用空气(不用其他气体)作为流体介质,因为空气是安全、成本低而又随处可得的流体,在系统

部件中产生电弧有可能点燃泄漏物的场合下(使用空气作为介质)尤其安全。(www.61k.com]

气压系统中,气动马达是将压缩空气的压力能转换成旋转的机械能的装置,在气压传统中使用最广泛的是叶片式和活塞式气动马达,它的工作原理是压缩空气从进气口进入气室后立即喷向叶片,作用在叶片的外伸部分,产生转矩带动转子作逆时针转动,输出旋转的机械能,无用的气体从排气口排出,残余气体则经二次排气,若进、排气口互换,则转子反转,输出相反方向的机械能。转子转动的离心力和叶片底部的气压力。弹簧力使得叶片紧密地抵在内壁上,以提高其工作效率。

在气压系统中.压缩机用来压缩并供应所需的空气。压缩机一般有活塞式、叶片式和螺旋式等类型。压缩机基本上是根据理想气体法则,通过减小气体体积来增加气体压力的。气压系统通常考虑采用大的中央空气压缩机作为一个无限量的气源,这类似于电力系统中只要将插头插入插座便可获得电能。用这种方法,压力气体可以从气源输送到整个工厂的各个角落,压力气体可通过空气滤清器除去污物,这些污物可能会损坏气动组件的精密配合部件如阀和气缸等,随后输送到各个回路中,接着空气流经减压阀以减小气压值适合某一个同路使用。因为空气不是好的润滑剂(包括20%的氧气),气压系统需要一个油雾器将细小的油雾注射到经过减压阀减压的空气中,这有助于减少气动组件精密配合运动件的磨损。

由于来自大气中的空气含不同数量的水分,这些水分是有害的,它可以带走润滑剂引起过分磨损和腐蚀,因此,在一些使用场合中,要用空气干燥器来除去这些有害的水份。由丁气压系统直接向大气排气,会产生过大噪声,因此可在气阀和执行组件排气口安装消声器来降低噪声,以防止操作人员因接触噪声及高速空气粒子有可能引发的伤害。

用气动系统代替液压系统有以下几条理由:液体的惯性远比气体大,因此,在液压系统中,当执行组件加速减速和阀突然开启关闭时,油液的质量便是一个游在的问题.根据牛顿运动定律(力等于质量乘以加速度),产生加速运动油液所需的力要比加速同等体积空气所需的力高出许多倍。液体比气体具有更人的粘性.这会冈为内摩擦而引起更人的压力和功率损失:另外.由于液压系统使用的液体要与大气隔绝,故它们需要特殊的油箱和无泄漏系统设计。气压系统使用可以直接排到周围环境中的空气,一般来说气压系统没有液体系统昂贵。

然而,由于空气的可压缩性,使得气压系统执行组件不可能得到精确的速

马腾飞 马腾飞

度控制和位置控制。[www.61k.com]气压系统由于压缩机局限,其系统压力相当低(低于250耐).

而液压力可达10000psi之高,因此液压系统可以是人功率系统,而气动系统仅用于小功率系统,典型例子有冲压、钻孔、提升、冲孔、夹紧、组装、铆接、材料处理和逻辑控制操作等。

泄漏是目前液压机械普遍存在的故障现象,尤其是在工程机械液压系统中更为严重,主要是由于液体在液压元件和管路中流动时产生压力差及各元件存在间隙等引起泄漏。另外,恶劣工况条件也会对工程机械的密封产生一定的影响。液压系统一旦发生泄漏,将会引起系统压力建立不起来,液压油泄漏还会造成环境污染,影响生产甚至产生无法估计的严重后果。下面针对一些影响工程机械液压系统泄漏的因素来简单的谈一下其泄漏原因及对策。

一、泄漏的分类:

工程机械液压系统的泄漏主要有两种,固定密封处泄漏和运动密封处泄漏,固定密封处泄漏的部位主要包括缸底、各管接头的连接处等,运动密封处主要包括油缸活塞杆部位、多路阀阀杆等部位。从油液的泄漏上也可分为外泄漏和内泄漏,外泄漏主要是指液压油从系统泄漏到环境中,内泄漏是指由于高低压侧的压力差的存在以及密封件失效等原因,使液压油在系统内部由高压侧流向低压侧。

二、影响泄漏的原因:

(1)密封件的选择

液压系统的可靠性,在很大程度上取决于液压系统密封的设计和密封件的选择,由于设计中密封结构选用不合理,密封件的选用不合乎规范,在设计中没有考虑到液压油与密封材料的相容型式、负载情况、极限压力、工作速度大小、环境温度的变化等。这些都在不同程度上直接或间接造成液压系统泄漏。另外,由于工程机械的使用环境中具有尘埃和杂质,所以在设计中要选用合适的防尘密封,避免尘埃等污物进入系统破坏密封、污染油液,从而产生泄漏。

(二)制造和装配因素

(1)制造因素:

马腾飞 马腾飞

所有的液压元件及密封部件都有严格的尺寸公差、表面处理、表面光洁度及形位公差等要求。[www.61k.com]如果在制造过程中超差,例如:油缸的活塞半径、密封槽深度或宽度、装密封圈的孔尺寸超差或因加工问题而造成失圆、本身有毛刺或有洼点、镀铬脱落等,密封件就会有变形、划伤、压死或压不实等现象发生使其失去密封功能。将使零件本身具有先天性的渗漏点,在装配后或使用过程中发生渗漏。

(2)装配因素:

液压元件在装配中应杜绝野蛮操作,如果过度用力将使零件产生变形,特别是用铜棒等敲打缸体、密封法兰等;装配前应对零件进行仔细检查,装配时应将零件蘸少许液压油,轻轻压入,清洗时应用柴油,特别是密封圈、防尘圈、O形圈等橡胶元件,如果用汽油则使其易老化失去原有弹性,从而失去密封机能。

(三)油液污染及零部件的损伤

(1)气体污染

在大气压下,液压油中可溶解10%左右的空气,在液压系统的高压下,在油液中会溶解更多的空气或气体。空气在油液中形成气泡,如果液压支架在工作过程中在极短的时间内,压力在高低压之间迅速变换就会使气泡在高压侧产生高温在低压侧发生爆裂,如果液压系统的元件表面有凹点和损伤时,液压油就会高速冲向元件表面加速表面的磨损,引起泄漏。

(2)颗粒污染

液压油缸作为一些工程机械液压系统的主要执行元件,由于工作过程中活塞杆裸露在外直接和环境相接触,虽然在导向套上装有防尘圈及密封件等,但也难免将尘埃、污物带入液压系统,加速密封件和活塞杆等的划伤和磨损,从而引起泄漏,颗粒污染为液压元件损坏最快的因素之一。

(3)水污染

由于工作环境潮湿等因素的影响,可能会使水进入液压系统,水会与液压油反应,形成酸性物质和油泥,降低液压油的润滑性能,加速部件的磨损,水还会造成控制阀的阀杆发生粘结,使控制阀操纵困难划伤密封件,造成泄漏.

马腾飞 马腾飞

(www.61k.com)

二 : 马腾飞

文献

1.XM55-1型钢坯修磨机

【作者单位】:北京市冶金设备自动化研究所;北京市冶金设备自动化研究所

【DOI】:cnki:ISSN:1001-196X.0.1984-01-015

【正文快照】:

在现代化钢铁厂中生产优质钢时,二为保证产品质量,精轧前必须修磨钢坯,消除某些合金钢轧坯和锻坯表面的脱碳层和缺陷。198.0年我们研究所接受了研制一台钢坯修磨机的任务,子1982牟完成研制兮经过试验和生产考核,它适于中小型钢坯的扒皮修磨。修磨的坯料表面光滑平坦,

2.大型钢坯修磨机恒力加载系统神经网络自适应控制的研究

作者 沙道航; 葛思华; 何钺;

作者单位 西安交通大学机械工程学院机电教研室;

文献出处 中国科学院上海冶金研究所; 材料物理与化学(专业) 博士论文 2000年度 关键词 钢坯修磨; 力控制系统; 神经网络; 自适应控制; 非线性系统;

3.高效重负载钢坯修磨机砂轮电液加载系统

【摘要】:导出了一种基于Popov超稳定性理论的模型跟随自适应控制方法,并应用于高效重负载钢坯修磨机砂轮电液加载系统。实验结果表明:采用该方法显著降低了由于砂轮位置干扰引起的加载力的变化。

【作者单位】: 浙江大学 浙江大学 西安交通大学 西安交通大学

【关键词】: 钢坯修磨 自适应控制 控制系统

【分类号】:TP273

【DOI】:CNKI:SUN:JCYY.0.1997-03-013

【正文快照】:

0前言众所周知,采用液压加载的力控制系统,由于负载位置的干扰而产生多余力是力控制系统固有的特性。此外,对于钢坯修磨机砂轮加载系统,负载位置的干扰还使加载机构的惯性力、重力以及摩擦力对砂轮负载有很大的影响。位置的变化还带来了加载系统参数的实时变化

4.钢坯修磨 恒力磨削

【摘要】: 钢坯修磨是钢坯进行轧制之前,采用砂轮磨削技术,清除钢坯表面的氧化皮缺陷和裂纹,以保证钢材成品最终质量和提高成才率的必备条件。由于钢坯表面不平,因此在修磨过程中,为了使砂轮能够适应钢坯表面起伏不平的变化,要求钢坯修磨机砂轮加载系统具有良好的跟随性。目前,钢坯修磨机存在的主要问题之一就是,砂轮加载系统的跟随性较差,远不能满足高性能修磨机的要求。而且目前,国内大部分修磨机仍采用落后的压下加载技术。本文对重载钢坯修磨机砂轮加载系统进行了深入的理论研究和试验研究。主要工

作和结论如下: 1.对钢坯修磨机砂轮加载机构进行了受力分析。分析表明该加载机构具有严重的非线性和时变特性。讨论了影响砂轮修磨压力变化的因素,提出了稳定修磨压力的方法。 2.对砂轮加载系统的几种电液加载方式进行了比较,首次在钢坯修磨机上采用比例三通减压阀加载系统,对系统的动态特性进行了深入的理论分析。建立了这加载系统的数学模型,同时,还 进行了大量的仿真研究和试验研究,一提出了一改善跟随特性的措 施。为钢坯修磨机砂轮加载系统提供了一种新的加载方式。

【关键词】:钢坯修磨 恒力磨削 电液比例系统 三通比例减压阀

【分类号】:TG580

【DOI】:CNKI:CDMD:2.2003.093979

5.神经网络非线性自适应控制方法

作者】 沙道航; 葛思华; 何钺;

【机构】 西安交通大学机械工程学院机电教研室;

【摘要】 首次将神经网络非线性自适应控制方法应用于钢坯修磨机恒力加载系统, 显著改善了系统的跟随特性。试验结果表明:该方法不仅能够提高系统输入阶跃的响应时间,而且对系统未知的外加干扰、系统参数时变特性和非线性有较强的自适应能力。 更多还原

【关键词】 钢坯修磨; 力控制系统; 神经网络; 自适应控制; 非线性系统;

6.TGM50—1型钢坯修磨机

【作者】 贾晓刚;

【作者单位】 太钢初轧厂;

【文献出处】冶金设备 , Metallurgical Equipment, 编辑部邮箱 1986年 03期

期刊荣誉:ASPT来源刊 中国期刊方阵 CJFD收录刊

【中文关键词】磨头; 修磨机; 砂轮座;

【摘要】一、前言 钢坯修磨机是钢铁厂中处理钢坯表面缺陷的装置,是重要的冶金设备之一。 由于不锈钢坯的表面常存在折迭、脱碳层、飞边、裂纹和氧化铁皮等,必须在加热前使用钢坯修磨机把这些缺陷去掉,以保证产品的质量。使用砂轮修磨能在同一台设备上用于金属表面缺陷层的剥皮和局部清除缺陷,以最小的金属损耗对轧材弯曲度仿形,得到高质量的表面,并能降低消耗和合理改善不锈钢的质量。砂轮修磨具有效率高、质量好、成本低,易于自动化和组成自动线进行高效率生产等优点。因此,在现代化的不锈钢生产中,在精轧前都要修磨板坯,清除缺陷以保证产品质量,业已成为不锈钢产品工艺中必不可少的环节

【DOI】 CNKI:SUN:YJSB.0.1986-03-005

7.钢坯修磨机磨头压下系统仿真及试验研究

关键词: 钢坯修磨机 液压压下系统 AMESim 复合控制

中文文摘信息 介绍了钢坯修磨机磨头液压压下系统的工作原理,提出压下过程中采用位置、压力复合控制,提高了工作效率。针对砂轮位置扰动引起的多余惯性力,及其磨头自身重力、摩擦力和惯性力对修磨力的影响,采用三通比例减压阀开环控制压力,系统压力波

动较大的问题,提出在三通比例减压阀控制压力的基础上叠加闭环控制的方法进行改进,实现了对磨头压下力的精确控制,使系统在位置扰动下能够保持良好的跟随特性,满足了性能要求,利用AMESim软件对系统进行了建模和仿真研究,确定了控制器参数,用试验验证了仿真结果,并已成功应用于国产板坯修磨机上。

第一作者 宁振雷

刊名:液压气动与密封

记录标识 KJ66bc2de4-4ffe-4df6-b7b4-9e3ce675068f

8.大型钢坯修磨机砂轮加载系统模型跟随自适应控制的研究

作者:沙道航

作者单位:西安交通大学机械工程

文献来源:西安工业学院学报

文摘:首次将模型跟随自适应控制新方法应用于大型钢坯修磨机砂轮加载系统的研究。实时控制试验结果表明:该方法不仅提高了系统对输入的阶跃响应,而且还显著地改善了加载系统的跟随特性。参7

顺序号:9607353

9.大型钢坯修磨机恒力加载系统神经网络自适应控制的研究

【摘要】:首次将神经网络非线性自适应控制方法应用于钢坯修磨机恒力加载系统, 显著改善了系统的跟随特性。试验结果表明:该方法不仅能够提高系统输入阶跃的响应时间,而且对系统未知的外加干扰、系统参数时变特性和非线性有较强的自适应能力。

【作者单位】:西安交通大学机械工程学院机电教研室 西安交通大学机械工程学院机电教研室 西安交通大学机械工程学院机电教研室

【关键词】:钢坯修磨 力控制系统 神经网络 自适应控制 非线性系统

【分类号】:TP273.2

10.钢坯修磨机砂轮主轴液压调速系统动静态特性分析

作者 沙道航; 葛思华; 何钺; 丁崇生;

作者单位 西安工业学院; 西安交通大学;

文献出处 中国科学院上海冶金研究所; 材料物理与化学(专业) 博士论文 2000年度 关键词 转速调节; 电液比例控制; 静液传动;

11.电液比例控制转速调节泵-马达系统钢坯修磨砂轮转速电液比例变量泵马达调节系统的研究

作者:沙道航[1] 李新忠[2]

关键词:泵-马达系统 转速调节 钢坯修磨 电液比例控制

期刊名称:液压气动与密封.1997(4).-21-23

机构:[1]浙江大学 [2]西安交通大学

摘要 钢坯修磨砂轮转速电液比例变量泵马达调节系统的研究第六图书馆本文介绍了钢坯修磨砂轮转速电泫比例变量泵马达调节系统,分析了其静态特性和控制器设计。本文介绍了钢坯修磨砂轮转速电泫比例变量泵马达调节系统,分析了其静态特性和控制器设计。

12.修磨机在特钢表面缺陷处理中的应用

期刊 QCode : tgjs200703015

介绍了修磨机在特钢表面缺陷清理方面的作用和使用过程中遇到的问题,以及处理这些问题的方法.

作者: 占磊,

关键词: 修磨机, 表面缺陷, 修磨效率,

<特钢技术>>2007年 第13卷 第03期

13.钢坯修磨机液压加载系统动态特性的研究

沙道航[1] 葛思华[2]

[1]浙江大学 [2]西安交通大学

摘 要:

对MG-H型系列大型钢坯修磨机液压加载系统的动态特性进行了较深入研究。建立了加载系统的数学模型,分析了加载系统的动态刚度,考察了加载机构自重及库仑摩擦力对加载系统动态刚度的影响,提出了提高或改善加载系统动态特性的措施,给出了大量的仿真与试验研究结果。

14.钢坯修磨机电液伺服加载系统跟随特性的研究

作者 沙道航; 杨华勇; 葛思华; 何钺;

作者单位 浙江大学; 西安交通大学;

文献出处 中国科学院上海冶金研究所; 材料物理与化学(专业) 博士论文 2000年度

关键词 钢坯修磨; 伺服控制; 动态刚度

15.金属切除率强力磨削影响钢坯修磨因素初探

作者:沙道航 葛思华

关键词:强力磨削 钢坯 修磨 金属切除率

期刊名称:西安工业学院学报.1994,14(2).-110-114

摘要 影响钢坯修磨因素初探第六图书馆强力磨削钢坯修磨金属切除率西安工业学院学报沙道航葛思华不详1994第六图书馆

16.并联式钢坯修磨机器人动力学及轨迹规划研究

王启明,胡明,郭成,蔡光起

东北大学机械工程与自动化学院

摘要: 介绍了一种新型的并联式钢坯修磨机器人机构,并对其运动学和动力学进行了分析和计算,给出了它们的显示解.在对修磨轨迹的规划中,采用四次多项式曲线和回旋曲线.最后结合一个实际例子进行了计算机仿真

关键词: 并联机器人 动力学 轨迹规划 计算机仿真

17.钢坯修磨一种并联机器人钢坯局部缺陷自动修磨系统

作者:胡明 蔡光起

期刊名称:金刚石与磨料磨具工程.1998(5).-20-22

关键词:钢坯修磨 并联机器人 机器人

期刊名称:金刚石与磨料磨具工程.1998(5).-20-22

摘要 一种并联机器人钢坯局部缺陷自动修磨系统第六图书馆钢坯缺陷修磨是保证轧材质量的重要工序

18.我国自行设计的钢坯修磨机研制成功

陈黎明

【摘要】: 我国自己设计的 YLMI——1型钢坯修磨机,最近由苏州冶金机械厂,东北工学院、上钢五厂等单位联合研制成功。八月二十日至二十二日,冶金部在苏州冶金机械厂召开现场会,对钢坯修磨机试验机组予以肯定。钢坯修磨作业是提高钢材质量的重要关键,也是当前国内各特殊钢厂迫切需要解决的一项工艺课题。我国长期以来,基本上依靠人工用手提砂轮修磨钢坯,生产效率低,质量难保证,而且环境污染严重。过去,我国曾从国外引进过一些钢

坯修磨设备,由于我国钢坯短,外形不规范,不太适用。

【关键词】:钢坯修磨 冶金机械 研制成功 试验机 生产效率 工学院 苏州 砂轮 冶金部 工艺课

【DOI】:CNKI:SUN:YAJI.0.1981-01-009

【正文快照】:我国自己设计的YLM工—1型钢坯修磨机,最近由苏州冶金机械!-上钢五厂等单位联气研掣应功东马匕工学院、。八月二十日至二十二日,冶金部在洲州冶金机械厂召开现场会,对钢坯修磨机试验机组子以肯定。 钢坯修磨作业是提篙钢材成髦的重要失键,也是当前国内各特殊姗厂迫切需要解决

19.plc闭环控制钢坯修磨机磨头压下系统试验研究

关键字:系统 试验 研究 plc 闭环控制 钢坯 压下

plc闭环控制钢坯修磨机磨头压下系统试验研究 收藏此文

全部作者 : 宁振雷 权龙

第一作者单位 : 太原理工大学机械电子工程研究所

论文摘要 : 针对砂轮位置扰动引起的多余惯性力,及其磨头自身重力、摩擦力和惯性力对系统输出力的影响,采用开环控制,系统压力波动较大的问题,提出在三通比例减压阀控制压力的基础上叠加闭环控制的方法进行改进。研制了以可编程控制器(plc)为核心的磨头压下控制系统,压下过程中采用位置、压力复合控制,提高了工作效率。引入带积分分离的增量式pid控制器,闭环控制压力,实现了对磨头压下力的精确控制,使该系统在位置扰动下能够保持良好的跟随特性,满足了性能要求,并已成功应用于国产mg215-h5板坯修磨机上。 关键词 : 钢坯修磨机;液压压下系统;plc;闭环控制;pid

20.大型钢坯修磨机恒力加载系统跟随特性的研究

论文作者 沙道航著

关键词 钢坯修模 恒力磨削

【中文摘要】钢坯修磨是在钢坯进行轧制之前,采用砂轮磨削技术,清除钢坯表面的氧化皮缺陷和裂纹,以保证钢材成品最终质量和提高成材率的必不可少的重要工序。恒力磨削是保证钢坯修磨后的表面质量和提高成材率的必备条件。由于钢坯表面不平,因此在修磨过程中,为了使砂轮能够适应钢坯表面起伏不平的变化

外文翻译

Hydraulic System

There are only three basic methods of transmitting power:Electrical,mechanical.and fluid power.Most applications actually use a combination of the

three methods to obtain the most efficient overall system.To properly determine which principle method to use。it is important to know the salient features of each type.For example,fluid systems call transmit power more economically Over greater distances than Can mechanical types.However。fluid systems are restricted to shorter distances than are electrical systems.

Hydraulic power transmission system ale concerned with the generation, modulation, and control of pressure and flow and ,and in general such systems include:

1.Pumps which convert available power from the prime mover to hydraulic power at the actuator.

2.Valves which control the direction of pump--flow,the level of power produced,and the amount of fluid一一flow to the actuators.The power level is determined by controlling both the flow and pressure level.

3.Actuators which convert hydraulic power to usable mechanical power Output at the point required.

4.The medium,which is a liquid,provides rigid transmission and control as well as 1ubrication of component s,sealing in valves.and cooling of the system.

5.Connectors which link the various system components,provide power conductors for the fluid under pressure,and fluid flow return to tank(reservoir). .

6、Fluid storage and conditioning equipment which ensure sufficient quality and quantity as well as cooling of the fluid.

7、pneumatics systems required a lubricator to inject。a very fine mist of oil into the air discharging from the pressure regulator.This prevents wear of the closely fitting moving parts of pneumatic

Hydraulic systems ale used in industrial applications such as stamping presses,steel mills,and general manufacturing,agricultural machines,mining industry,aviation,space technology,deep—sea exploration, transportation,marine technology,and offshore gas and petroleum exploration.In short,very few people get through a day of their 1ives without somehow benefiting from the technology of hydraulics2.

The principle of electrical-discharge machining also called electro is or spark-erosion machining, is based on the erosion of metals by spark discharges. We know that when two current-conduct in wires are allowed to touch each other, an arc is produced. If we look closely at the point of contact between the two wires, we note

that a small portion of the metal has been eroded away, leaving a small crater.

The basic EDM system consists of a shape tool and the workpiece, connected to a dc power supply and placed in a dielectric fluid this is one of the most widely used machining processes, particularly for die-sinking operations when the potential difference between the tool and the work piece is sufficiently high, a transient spark discharges through the fluid, removing a very small amount of metal from the work piece surface.

The capacitor discharge is repeated at rates of between 50,with voltages usually ranging between 50vand 380v and currents from 0.1A to 500A.

Mechanical control includes cams and governors. Although they have been used for the control of very complex machines, to be cost effectively, today they are used for simple and fixed-cycle task control. Some automated machines, such as screw machines, still use cam-based control. Mechanical control is difficult to manufacture and is subject to wear.

Pneumatic control is still very popular for certain applications. It uses compressed air, valves, and switchs to construct simple control logic, but is easily slow. Because standard compaonents are used to construct the logic, it is easier to build than a mechanical control . Pneumatic control parts are subject to wear.

As does a mechanical control, an electromechanical control uses switches, relays, times counters, and so on, to construct logic, it is faster and more flexible. The controllers using electromechanical control are called relay devices.

The values in the express the relative tool distance from the home position. This distance is shown in the relative or incremental coordinates, U and W.

when reading the values in the not possible to know directly how far the tool is from the part origin. Just how far it is from the home position. mounted on exhaust ports of air valves and actuators to reduce noise and prevent operating personnel from possible injury resulting not only from exposure to noise but also from high—speed airborne particles.The sign of the coordinates is zero or negative because the tool cannot move farther than the machine origin . thus at present , the values are zero so the tool is at the home position. The values in the are normally used when setting up the tools in order to find the real tool distances from the part origin.

The values in the absolute position express the absolute tool distance from the part origin. This distance is shown in shown in absolute coordinates, x and z .the sign may be positive or negative, depending on the quadrants in which the tool is moving.

because of the compressibility of air,

it is impossible to obtain precise controlled actuator velocities with pneumatic systems.also,precise positioning control is not obtainable.While pneumatic pressures are quite so far is to good. This is an important piece of information for the operator when maching, since any value in the absolute position is directly related to the part.

The secret of hydraulic system’s SUCCESS and widespread use is its versatility and manageability.Fluid power is not hindered by the geometry operations when the potential difference between the tool and the work piece is sufficiently high, a transient spark discharges through the fluid, removing a very small amount of metal from the work piece of the machine as is the ease in mechanical systems.Also,power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical 1imitations of materials as are the electrical systems.For example,the performance of an electromagnet is limited by The saturation limit of steel.On the other hand,the power limit of fluid systems is 1imited only by the strength capacity of the material.

In the express the relative tool distance from the home position. This distance is shown in the relative or incremental coordinates, U and W. when reading the values in the not possible to know directly how far the tool is from the part origin.

Just how far it is from the home position. The sign of the coordinates is zero or negative because the tool cannot move farther than the machine origin . thus at present , the values are zero so the tool is at the home position. The values in the are normally used when setting up the tools in order to find the real tool distances from the part origin.

Industry is going to depend more and more on automation in order to increase productivity.This includes remote and direct control of production operations,manufacturing processes。and materials handling.

Fluid power is the muscle of automation because of advantages in the following four major categories.

1.Ease and accuracy of contr01.By the use of Simple levers and push but tons,the operator of a flu id power system Call readily start,stop,speed up or slow down,and position forces which provide any desired horsepower With tolerances as precise as one ten—thousandth Of an inch.Fig.13—1 shows a fluid power system which allows all aircraft pilot to raise and lower his landing gear.When the pi lot moves a

small contr01 valve in one direction,oil under pressure flows to one end of the cylinder to lower the landing gear.To retract the landing gear,the pilot

moves the valve lever in the opposite direction,a110wlng 0il to flow into the other end of the cylinder.

2.Multiplication of force. A fluid power system(without using cumbersome gears,pulleys,and levers)Can multiply forces Simply and efficiently from a fraction of an ounce to several hundred tons of output.

3.Constant force or torque.Only fluid power systems are capable of providing constant force or torque regardless of speed changes.This is accomplished whether the work output moves a few inches per hour,several hundred inches per minute,a few revolutions per hour.or thousands of

revolutions per minute.

4.Simplicity,safety,economy.general,fluid power systems use fewer moving parts than

comparable mechanical or electrical systems.

Thus,they ale simpler to maintain and operate.This,in turn,maximizes safety,compactness,and reliability.For example,a new power steering contr01 designed has made all other kinds of power systems obsolete on many

off—highway vehicles.The Steering unit consists of a manually operated directional control valve and meter in a single body.transportation,marine technology,and offshore gas and petroleum exploration.In short,very few people get through a day of their 1ives without somehow benefiting from the technology of hydraulics2.Because the steering unit is fully fluid 1inked,mechanical linkages,universal joints。bearings,reduction gears,etc.are eliminated.This provides a simple,compact system.In addition,very little input torque is required to produce the control needed for the toughest applications.This is important where 1imitations of control space require a small steering wheel and it becomes necessary to reduce operator fatigue.

There are several types of shaft couplings; their characteristics depend on the prupose for which they are used. If an exceptionally long shaft is required for a line shaft in the manufacturing plant or a propeller shaft on ship, it is made in sections that are coupled together with rigid couplings.

Additional benefits of fluid power systems include instantly reversible motion。automatic.protection against overloads,and infinitely variable speed contr01.Fluid power systems also have the highest horsepower per weight rati0 of any known power

source.In spite of al 1 these highly desirable features of fluid power,it is not a panacea for all power transmission

problems.work revolves as the table moves along the ways, a helical or spiral cut is produced; as shown in milling-cutters, helical gears, twist drills and similar worm are produced in this way. The milling of such items requires a particular relationship between the motions of the dividing head and associated gear train, to control the distance the worm will travel while making one complete revolution. Before the helix can be machined the lead and angle of helix are twist drills and similar worm are produced in this way. The milling of such items requires a particular relationship between the motions of the dividing head and associated gear train, to control the distance the worm will travel while making one complete revolution. Hydraulic oil s are messy.and leakage is impossible to completely eliminate.Also,most hydraulic oil s Carl cause fires if an oil 1eak occur in an area of hot equipment.

Pneumatic System

Pneumatic systems use pressurized gases to transmit and control power.As the name implies,pneumatic systems typically use air(rather than some other gas)as the fluid medium because air is a safe,low cost,and readily available fluid.It is particularly safe in environment s where an e1 electrical spark could ignite leaks from system component s.

Worm wheel are similar to bevel gears and are generally used to connect skew shafts transmitting high velocity rations. The worm wheel give line contact between mating teeth unlike a point contact in the case of bevel gears. This improves the load carrying capacity of the gear train.

In pneumatic systems compressors are used to compress and supply the necessary quantities of air.Compressors are typically of the piston,vane or Screw type.Basically a compressor.Increase the pressure of a gas by reducing its v01ume as described by the perfect gas 1aws.

In connecting shafts belonging to separate devices(such as an electrical motor and gearbox) precise aligning of the shafts is diffcult and a flexible coupling is used. This coupling connects the shafts is such a way as to minimize the harmful effects of shaft misalignment. Flexible couplings also permit the shafts to defect under their separate systems of loads and to move freely in the axial direction without interfering with one another. Flexible couplings can also serve to reduce the intensity of shock load and vibrations transmitted from one shaft to another.

Pneumatic systems normally use a large centralized air compressor which is considered to be an infinite。Air source similar to an electrical system where you merely

plug into an electrical outlet for electricity.In this way,pressurized air can be piped from one source to various 10cations throughout an entire industrial plant.The compressed air car be Piped to each circuit through an air filter to remove contaminants which might harm the closely fitting parts of pneumatic components the such as valve and cylinders.The air then flows through a pressure regulator which reduces the pressure to the desired level for the particular circuit application.Because air is not a good 1ubricant(contains bout 20%oxygen),pneumatics systems required a lubricator to inject。a very fine mist of oil into the air discharging from the pressure regulator.This prevents wear of the closely fitting moving parts of pneumatic components.

Free air from the atmosphere contains varying amounts of moisture.This moisture can be harmful in that it Can wash away lubricants and thus cause excessive wear and corrosion.Hence,in some applications,air driers are needed to remove this undesirable moisture

Since pneumatic systems exhaust directly into the atmosphere,they are capable of generating

Excessive noise.Therefore.mufflers are mounted on exhaust ports of air valves and actuators to reduce noise and prevent operating personnel from possible injury resulting not only from exposure to noise but also from high—speed airborne particles There are several reasons for considering the use of pneumatic systems instead of hydraulic systems.Liquids exhibit greater inertia than do gases.Therefore,in hydraulic systems the weight of oil is a potential problem when accelerating and decelerating actuators and When suddenly opening and closing valves.

Due to Newton law of motion(force equalsmass multiplied by acceleration),the force required to accelerate oil is many times greater than that required to accelerate an equal volume of air.1iquids also exhibit greater viscosity than do gases.This results in larger frictional pressure and power losses.A1SO,since hydraulic systems

use a fluid foreign to the atmosphere,they require special reservoirs and no leak system designs.Pneumatic systems

when the worm spindle of an index head is geared to the lead screw of the milling

machine so that the work revolves as the table moves along the ways, a helical or spiral cut is produced; as shown in milling-cutters, helical gears, twist drills and similar worm are produced in this way. The milling of such items requires a particular relationship between the motions of the dividing head and associated gear train, to control the distance the worm will travel while making one complete revolution. Before the helix can be machined the lead and angle of helix are necessary together with worm diameter.

Use air which is exhausted directly back into the surrounding environment.Generally speaking,pneumatic systems are less expensive than hydraulic systems.

However,because of the compressibility of air,it is impossible to obtain precise controlled actuator velocities with pneumatic systems.also,precise positioning control is not obtainable.While pneumatic pressures are quite 10W due to compressor design limitations(1ess than 250 psi),hydraulic pressures call be as high as 10,000 psi.Thus,hydraulics can be high——power systems。whereas pneumatics are confined to low--power applications4.

Industrial applications of pneumatic Systems are growing at a rapid pace.Typical examples include Stamping,drilling,hoist,punching,Clamping,assembling,riveting,materials

handling,and logic controlling operations.

液压与气压系统

液压系统中仅有以下三种基本方法传递动力:电气、机械和流体。大多数应用系统实际上是将三种方法组合起来而得到最有效的最全面的系统。为了合理地确定采取哪种方法,重要的是了解各种方法的显著特征。例如液压系统在长距离上比机械系统更能经济地传递动力。然而液压系统与电气系相比,传递动力的距离较短。

液压与气压传动是研究以有压流体为能源介质,来实现各种机械的传动和自动控制的学科.液压传动与气压传动控制方法是基本相同的.

在流动的液体中,因为有一定量的空气,一般溶解5%--6%体积的空气,油液能溶解的空气量与绝对压力成正比,在大气压下正常溶解于油液中的空气。当压力低于大气压时,就成为过饱和状态,在一定温度下,如压力降低到一定值时,过饱和的空气将从油液中分离出来形成气泡。这一压力值为分离压。含有气泡的体积将缩小。

液压动力传递系统涉及电动机、调节装置和压力和流量控制,总的来说,该系统包括:

·泵:将原动机的能力转换成作用在执行部件上的液压能。

·阀:控制泵产生流体的运动方向、产生的功率的大小,以及到达执行部件液体的流量。功率大小取决于对流量和压力大小的控制。

·执行部件:将液压能转换成可用的机械能。

·介质即油液:可进行无压缩传递和控制,同时可以润滑部件,使阀体密封和系统冷却。

·联接件:联接各个系统部件,为压力流体提供功率传输通路,将液体返回油箱(贮油器)。

·油液贮存和调节装置:用来确保提供足够质量和数量并冷却的液体。 液压系统在工业中应用广泛,例如冲压、钢类I:件的磨削及一般加工业、农机、矿业、航天技术、深海勘探、运输、海洋技术,近海天然气和三种油勘探等行业.简而言之,在日常生活中很少有人不从液压技术中得到某种益处。 在液压系统中,除需要液压泵供油和液压执行元件来驱动工作装置外,还要配备一定数量的液压控制阀来对液流的流动方向、压力的高低以及流量的大小进行设想的控制,以满足负载的工作要求。因此,液压控制阀是直接影响液压系统工作过程和工作我的重要元件。

各类液压控制阀虽然形式不同,控制的功能各有所异,但都 具有共性。首先,在结构上,所有的阀都有阀体、阀芯和驱使阀芯动作的元部件等组成。其次,在工作原理上,所有的代的阀口大小,阀进间的压差以及通过阀的流量之间的关

系都是符合孔口流量的公式。只是各种阀控制的参数各不相同而已。如压力阀控制的是压力,流量阀控制的是流量等 。

液压系统成功而又广泛使用的秘密在于它的通用性和易操作性。液压动力传递不会像机械系统那样受到机器几何形体的制约,另外,液压系统不会像电气系统那样受到材料物理性能的制约,它对传递功率几乎没有量的限制。例如,一个电磁体的性能受到钢的磁饱和极限的限制,相反,液压系统的功率仅仅受材料强度的限制。

企业为了提高生产率将越来越依靠自动化,这包括远程和直接控制生产操作、加1:过程和¨材料处理等。液压动力之所以成为自动化的重要组成部分,是冈为它有如下主要的四种优点:

1.控制方便精确通过操作一个简单的操纵杆和按钮,液压系统的操作者便能立即起动、停止、加减速和能提供任意功率、位置精度为万分之一英寸的位置控制力。

图13一l是一个使飞机驾驶员升起和落下起落架的液压系统,当飞行员向某方向移动控制阀,压力油流人液压缸的某一腔从而降下起落架。飞行员向相反方向移动控制阀,允许

油液进人液压缸的另一腔来收同起落架。

2.增力一个液压系统(没有使J=}j笨重的齿轮、滑轮利杠杆)能简单有效地将不到

一盎司的力放人产生儿白吨力的输出。

3.恒力或恒扭矩只有液压系统能提供不随速度变化而变化的恒力或恒扭矩,它可

以驱动对象从每小时移动几英寸到每分钟几百英寸.从每小时几转到每分钟几千转。

4.简便、安全、经济总的来说,液压系统比机械或电气系统使用更少的运动部件,冈此,它们运行与维护简便。这使得系统结构紧凑,安全可靠。例如一种用于车辆上的新型动力转向控制装置己淘汰其他类型的转向动力装置,该转向部件中包含有人力操纵方向控制阀和分配器。冈为转向部件是全液压的,没有万向节、轴承、减速齿轮等机械连接,这使得系统简单紧凑。

另外,只需输入很小的扭矩就能产生满足极恶劣工作条件所需的控制力.这对操作空间限制而需要小方向盘的场合很重要,这也是减轻司机疲劳度所必需的。

液压系统的其他优点包括双向运动、过载保护和无级变速控制,在已有的任何动力系统中液压系统亦具有最大的单位质量功率比。

气压系统

气压系统是用压力气体传递和控制动力,正如名称所表明的那样,气压系统通常用空气(不用其他气体)作为流体介质,因为空气是安全、成本低而又随处可得的流体,在系统

部件中产生电弧有可能点燃泄漏物的场合下(使用空气作为介质)尤其安全。

气压系统中,气动马达是将压缩空气的压力能转换成旋转的机械能的装置,在气压传统中使用最广泛的是叶片式和活塞式气动马达,它的工作原理是压缩空气从进气口进入气室后立即喷向叶片,作用在叶片的外伸部分,产生转矩带动转子作逆时针转动,输出旋转的机械能,无用的气体从排气口排出,残余气体则经二次排气,若进、排气口互换,则转子反转,输出相反方向的机械能。转子转动的离心力和叶片底部的气压力。弹簧力使得叶片紧密地抵在内壁上,以提高其工作效率。

在气压系统中.压缩机用来压缩并供应所需的空气。压缩机一般有活塞式、叶片式和螺旋式等类型。压缩机基本上是根据理想气体法则,通过减小气体体积来增加气体压力的。气压系统通常考虑采用大的中央空气压缩机作为一个无限量的气源,这类似于电力系统中只要将插头插入插座便可获得电能。用这种方法,压力气体可以从气源输送到整个工厂的各个角落,压力气体可通过空气滤清器除去污物,这些污物可能会损坏气动组件的精密配合部件如阀和气缸等,随后输送到各个回路中,接着空气流经减压阀以减小气压值适合某一个同路使用。因为空气不是好的润滑剂(包括20%的氧气),气压系统需要一个油雾器将细小的油雾注射到经过减压阀减压的空气中,这有助于减少气动组件精密配合运动件的磨损。

由于来自大气中的空气含不同数量的水分,这些水分是有害的,它可以带走润滑剂引起过分磨损和腐蚀,因此,在一些使用场合中,要用空气干燥器来除去这些有害的水份。由丁气压系统直接向大气排气,会产生过大噪声,因此可在气阀和执行组件排气口安装消声器来降低噪声,以防止操作人员因接触噪声及高速空气粒子有可能引发的伤害。

用气动系统代替液压系统有以下几条理由:液体的惯性远比气体大,因此,在液压系统中,当执行组件加速减速和阀突然开启关闭时,油液的质量便是一个游在的问题.根据牛顿运动定律(力等于质量乘以加速度),产生加速运动油液所需的力要比加速同等体积空气所需的力高出许多倍。液体比气体具有更人的粘性.这会冈为内摩擦而引起更人的压力和功率损失:另外.由于液压系统使用的液体要与大气隔绝,故它们需要特殊的油箱和无泄漏系统设计。气压系统使用可以直接排到周围环境中的空气,一般来说气压系统没有液体系统昂贵。

然而,由于空气的可压缩性,使得气压系统执行组件不可能得到精确的速

度控制和位置控制。气压系统由于压缩机局限,其系统压力相当低(低于250耐).

而液压力可达10000psi之高,因此液压系统可以是人功率系统,而气动系统仅用于小功率系统,典型例子有冲压、钻孔、提升、冲孔、夹紧、组装、铆接、材料处理和逻辑控制操作等。

泄漏是目前液压机械普遍存在的故障现象,尤其是在工程机械液压系统中更为严重,主要是由于液体在液压元件和管路中流动时产生压力差及各元件存在间隙等引起泄漏。另外,恶劣工况条件也会对工程机械的密封产生一定的影响。液压系统一旦发生泄漏,将会引起系统压力建立不起来,液压油泄漏还会造成环境污染,影响生产甚至产生无法估计的严重后果。下面针对一些影响工程机械液压系统泄漏的因素来简单的谈一下其泄漏原因及对策。

一、泄漏的分类:

工程机械液压系统的泄漏主要有两种,固定密封处泄漏和运动密封处泄漏,固定密封处泄漏的部位主要包括缸底、各管接头的连接处等,运动密封处主要包括油缸活塞杆部位、多路阀阀杆等部位。从油液的泄漏上也可分为外泄漏和内泄漏,外泄漏主要是指液压油从系统泄漏到环境中,内泄漏是指由于高低压侧的压力差的存在以及密封件失效等原因,使液压油在系统内部由高压侧流向低压侧。

二、影响泄漏的原因:

(1)密封件的选择

液压系统的可靠性,在很大程度上取决于液压系统密封的设计和密封件的选择,由于设计中密封结构选用不合理,密封件的选用不合乎规范,在设计中没有考虑到液压油与密封材料的相容型式、负载情况、极限压力、工作速度大小、环境温度的变化等。这些都在不同程度上直接或间接造成液压系统泄漏。另外,由于工程机械的使用环境中具有尘埃和杂质,所以在设计中要选用合适的防尘密封,避免尘埃等污物进入系统破坏密封、污染油液,从而产生泄漏。

(二)制造和装配因素

(1)制造因素:

所有的液压元件及密封部件都有严格的尺寸公差、表面处理、表面光洁度及形位公差等要求。如果在制造过程中超差,例如:油缸的活塞半径、密封槽深度或宽度、装密封圈的孔尺寸超差或因加工问题而造成失圆、本身有毛刺或有洼点、镀铬脱落等,密封件就会有变形、划伤、压死或压不实等现象发生使其失去密封功能。将使零件本身具有先天性的渗漏点,在装配后或使用过程中发生渗漏。

(2)装配因素:

液压元件在装配中应杜绝野蛮操作,如果过度用力将使零件产生变形,特别是用铜棒等敲打缸体、密封法兰等;装配前应对零件进行仔细检查,装配时应将零件蘸少许液压油,轻轻压入,清洗时应用柴油,特别是密封圈、防尘圈、O形圈等橡胶元件,如果用汽油则使其易老化失去原有弹性,从而失去密封机能。

(三)油液污染及零部件的损伤

(1)气体污染

在大气压下,液压油中可溶解10%左右的空气,在液压系统的高压下,在油液中会溶解更多的空气或气体。空气在油液中形成气泡,如果液压支架在工作过程中在极短的时间内,压力在高低压之间迅速变换就会使气泡在高压侧产生高温在低压侧发生爆裂,如果液压系统的元件表面有凹点和损伤时,液压油就会高速冲向元件表面加速表面的磨损,引起泄漏。

(2)颗粒污染

液压油缸作为一些工程机械液压系统的主要执行元件,由于工作过程中活塞杆裸露在外直接和环境相接触,虽然在导向套上装有防尘圈及密封件等,但也难免将尘埃、污物带入液压系统,加速密封件和活塞杆等的划伤和磨损,从而引起泄漏,颗粒污染为液压元件损坏最快的因素之一。

(3)水污染

由于工作环境潮湿等因素的影响,可能会使水进入液压系统,水会与液压油反应,形成酸性物质和油泥,降低液压油的润滑性能,加速部件的磨损,水还会造成控制阀的阀杆发生粘结,使控制阀操纵困难划伤密封件,造成泄漏.

本文标题:马腾飞-马腾飞
本文地址: http://www.61k.com/1112010.html

61阅读| 精彩专题| 最新文章| 热门文章| 苏ICP备13036349号-1