61阅读

遗传算法的应用-遗传算法和增量动态规划算法在水库优化调度中的应用_王白陆

发布时间:2017-09-12 所属栏目:动态规划算法

一 : 遗传算法和增量动态规划算法在水库优化调度中的应用_王白陆

白陆 遗传算法和增量动态规划算法在水库优化调度中的应用_王白陆

白陆 遗传算法和增量动态规划算法在水库优化调度中的应用_王白陆

白陆 遗传算法和增量动态规划算法在水库优化调度中的应用_王白陆

白陆 遗传算法和增量动态规划算法在水库优化调度中的应用_王白陆

白陆 遗传算法和增量动态规划算法在水库优化调度中的应用_王白陆

白陆 遗传算法和增量动态规划算法在水库优化调度中的应用_王白陆

白陆 遗传算法和增量动态规划算法在水库优化调度中的应用_王白陆

白陆 遗传算法和增量动态规划算法在水库优化调度中的应用_王白陆

白陆 遗传算法和增量动态规划算法在水库优化调度中的应用_王白陆

二 : 遗传算法的应用

2.2遗传算法的应用
遗传算法提供了一种求解复杂系统优化问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性。所以,广泛应用于很多学科。下面是遗传算法的一此主要应用领
域。
2.2.1函数优化
函数优化是遗传算法的经典应用领域,也是对遗传算法进行性能评价的常用算例。很多人构造出了各种各样的复杂形式的测试函数。有连续函数也有离散函数,有凸函数也有凹函数,有低维函数也有高维函数,有确定函数也有随机函数,有单峰值函数也有多峰值函数等。用这些几何特性各具特色的函数来评价遗传算法的性能,更能反映算法的本质效果而对于一些非线性、多模型、多目标的函数优化问题,用其他优化方法较难求解。而遗传算法却可以方便地得到较好的结果。

2.2.2组合优化
随着问题规模的增大,组合优化问题的搜索空间也急剧扩大。有时在目前的计算机上用枚举法很难或甚至不可能求出其精确最优解。对这类复杂问题,人们已意识到应把主要精力放在寻求其满意解上,而遗传算法是寻求这种满意解的最佳工具之一。实践证明,遗传算法已经在求解旅行商问题、背包问题、装箱问题、布局优化、图形划分问题等各种具有NP难度的问题得到成功的应用。
2.2.3生产调度问题
生产调度问题在很多情况下建立起来的数学模难以精确求解,即使经过一些简化之后可以进行求解.也会因简化得太多而使得求解结果与实际相差甚远。目前在现实生产中主要是靠一些经验来进行调度。现在遗传算法已成为解决复杂调度问题的有效下具。在单件生产车间调度、流水线生产间调度、生产规划、任务分配等方面遗传算法都得到了有效的应用。
2.2.4自动控制
在自动控制领域中有很多与优化相关的问题需要求解。遗传算法已在其中得到了初步的应用,并显示出良好的效果。例如用遗传算法进行航空控制系统的优化、使用遗传算法设计空间交会控制器、基于遗传算法的模糊控制器的优化设计、基于遗传算法的参数辨识、基于遗传算法的模糊控制规则的学习、利用遗传算法进行人工神经网络的结构优化设计和权值学习等。都显出了遗传算法在这此领域中应用的可能性。
2.2.5机器人学
机器人是一类复杂的难以精确建模的人工系统,而遗传算法的起源就来自于人工自适应系统的研究。所以,机器人学理所当然地成为遗传算法的一个重要应用领域。例如,遗传算法已经在移动机器人路径规划、关节机器人运动轨迹规划、机器人逆运动学求解、细胞机器人的结构优化和行为协调等方而得到研究和应用。
2.2.6 图像处理
图像处理是计算机视觉中的一个重要研究领域。在图像处理过程中,如扫描、特征提取、图像分割等不可避免地会存在一此误差,从而影响图像的效果。如何使这些误差最小是使计算机视觉达到实用化的重要要求。遗传算法在这些图像处理中的优化计算方面找到了用武之地。目前已在模式识别(包括汉字识别)、图像恢复、图像边缘特征提取等方而得到了应用。
2.2.7 人工生命
人下生命是用计算机、机械等人下媒体模拟或构造出的具有自然生物系统特有行为的人造系统。自组织能力和自学习能力是人下生命的两大主要特征。人下生命与遗传算法有着密切的关系。基于遗传算法的进化模型是研究人下生命现象的重要基础理论。虽然人下生命的研究尚处于启蒙阶段,但遗传算法已在其进化模型、学习模型、行为模型、自组织模型等方面显示出了初步的应用能力,并且必将得到更为深入的应用和发展。人工生命与遗传算法相辅相成,遗传算法为人下生命的研究提供一个有效的下具,人下生命的研究也必将促进遗传算法的进一步发展。
2.2.8 遗传编程
1989年,美国Standford大学的Koza教授发展了遗传编程的概念,其基木思想是:采用树型结构表示计算机程序,运用遗传算法的思想,通过自动生成计算机程序来解决问题。虽然遗传编程的理论尚米成热,应用也有一此限制,但它已成功地应用于人工智能、机器学习等领域。目前公开的遗传编程实验系统有十多个。例如,Koza开发的ADF系统,While开发的GPELST系统等。
2.2.9 机器学习
学习能力是高级自适应系统所具备的能力之一,基于遗传算法的机器学习,特别是分类器系统,在很多领域中都得到了应用。例如,遗传算法被用于学习模糊控制规则,利用遗传算法来学习隶属度函数,从而更好地改进了模糊系统的性能;基于遗传算法的机器学习可用来调整人工神经网络的连接权,也可用于人工神经网络结构优化设计;分类器系统也在学习式多机器人路径规划系统中得到了成功的应用。
2.2.10 数据挖掘
数据挖掘是近几年出现的数据库技术,它能够从大型数据库中提取隐含的、先前未知的、有潜在应用价值的知识和规则。许多数据挖掘问题可看成是搜索问题,数据库看作是搜索空间,挖掘算法看作是搜索策略。因此,应用遗传算法在数据库中进行搜索,对随机产生的一组规则进行进化.直到数据库能被该组规则覆盖,从而挖掘出隐含在数据库中的规则。Sunil已成功地开发了一个基于遗传算法的数据挖掘下具。利用该工具对两个飞机失事的真实数据库进行了数据挖掘实验,结果表明遗传算法是进行数据挖掘的有效方法之一。
本文标题:遗传算法的应用-遗传算法和增量动态规划算法在水库优化调度中的应用_王白陆
本文地址: http://www.61k.com/1106724.html

61阅读| 精彩专题| 最新文章| 热门文章| 苏ICP备13036349号-1