61阅读

电涡流效应的原理-涡流热效应的应用与危害之原理分析

发布时间:2017-10-22 所属栏目:变频器的原理及应用

一 : 涡流热效应的应用与危害之原理分析

在整块金属内部引起的感应电流叫涡流(也称涡电流),由于多数金属的电阻率很小,因此不大的感应电动势往往可以在整块金属内部激起强大的涡流,如图1所示为一个铁芯线圈通过交变电流时在铁芯内部激起的涡流,它是由变化磁场激发的感生电场引起的,涡流与普通电流一样要放出焦耳热.

1 教材的表述
人民教育出版社普通高中课程标准实验教科书《物理》选修3—2,第四章《电磁感应》的第7节《涡流》中,给出了这样的表述:当线圈中的电流随时间变化时,由于电磁感应,附近的另一个线圈中会产生感应电流.实际上,这个线圈附近的任何导体中都会产生感应电流……用来冶炼合金钢的真空冶炼炉,炉外有线圈,线圈中通入反复变化的电流,炉内的金属中产生涡流.涡流产生的热量使金属熔化并达到很高的温度……电动机、变压器的线圈都绕在铁芯上.线圈中流过变化的电流,在铁芯中产生的涡流使铁芯发热,浪费了能量,还可能损坏电器.因此,我们要想办法减小涡流.
2 问题的提出
笔者在调研听课中发现,不少老师把本节教材当做阅读材料,安排学生自己阅读本节内容,教师不做讲解分析.结果学生读完教材上的内容后,一头雾水,不知道究竟为什么真空冶炼炉内可以“使金属熔化并达到很高的温度”,也不知道为什么电动机或变压器的“铁芯中产生涡流使铁芯发热”.本文试图从电磁感应的原理出发,推导出涡流热效应产生的焦耳热功率表达式.
3 涡流热功率的推导
假设一个长直螺线管的长度为l,单位长度的匝数为n(n足够大),若螺线管的横截面半径远小于管长l,可将该螺线管看作无限长密绕螺线管,如图2所示.当螺线管通入正弦交变电流i=I0sinωt时,管内的磁场可看作匀强磁场,其磁感应强度为B,根据毕奥—萨伐尔定律,磁感应强度B大小为:
由(6)式可见,涡流产生的焦耳热功率与螺线管内的最大磁感应电流Bm的平方成正比,与交变电流变化的角频率ω的平方成正比,与金属的电阻成反比.我们可以通过控制这些物理量的大小来改变涡流的热功率,满足生产生活的需求.
4 涡流热效应的应用与危害
4.1 应用
冶炼金属用的真空冶炼炉是最为常见的感应加热设备,图3所示是真空冶炼炉的示(www.61k.com]意图,当给冶炼炉接入高频交变电流时,炉内被冶炼的金属因其电阻率很小,在金属内出现了强大的感应电流,它所产生的热量可使金属很快熔化.这种冶炼方法的最大优点之一,就是冶炼所需的热量直接来自被冶炼金属本身,因此可达极高的温度并有快速和高效的特点.此外,这种冶炼方法易于控制温度,并能避免有害杂质混入被冶炼金属中,因此适于冶炼特种合金和特种钢等.
4.2 危害
涡流的热效应也有其危害,如在电动机和变压器工作时,由于涡流产生的热量,会导致其内部的铁芯温度升高,从而危及线圈绝缘材料的寿命,严重时甚至可使绝缘材料烧毁.其次,涡流发热要损耗额外的能量,称为涡流损耗,使电动机和变压器的效率降低.为了减小涡流,电动机和变压器的铁芯都不用整块钢铁而用很薄的硅钢片叠压而成.硅钢是掺有少量硅的钢,其电阻率比普通钢大,因此涡流损耗得以减小.把硅钢制成片状则是为了借用片间的绝缘漆或自然形成的绝缘氧化层,切断涡流的通路以进一步减小涡流的发热.

二 : 涡流效应产生的原因及涡流效应的利弊与控制

涡流产生的原因

涡流效应产生的原因及涡流效应的利弊与控制_涡流效应

从前面我们所学的课程可以得知,通过线圈回路的磁通量发生变化,线圈中就会产生感应电动势,回路中也就产生感应电流(穿过线圈的磁通发生变化而产生的感应电动势)。

如果把一块导[www.61k.com]体放在变化着的磁场中或相对于磁场运动时,由于导体内部都可构成闭合回路,穿过回路的磁通发生变化,因此在导体中也会产生感应电流,这些电流在导体内自行闭合成旋涡状,故称涡电流,简称涡流。

涡流效应的利弊

涡流效应产生的原因及涡流效应的利弊与控制_涡流效应

如右图(a)所示,由于导体电阻很小,因此涡流一般都很大。由于电流的热效应,涡流会使导体发热,消耗能量,所以涡流有时是有害的。例如通过变压器、电动机和发电机中的交变电流磁场,会使铁心产生涡流,涡流是铁芯发热,这样就造成损耗(俗称铁损)并使设备产生热量,温度升高,绝缘材料容易老化,缩短变压器、电动机和发电机的使用寿命,甚至使他们损坏。

涡流在各种电机、变压器中是有害的,但也有可用之处,例如工厂冶炼合金时常常用的高频感应炉就是利用金属导体块中产生的涡流来熔化金属。

电工测量仪表要求指针的摆动很快停下来,以便迅速读出读数(如电流表、电压表等)。为达到此目的,电流表的线圈要绕在铝框上,当被测电流通过线圈时,线圈带动指针和铝框一起转动,铝框在磁场中转动时产生涡流,磁场对这个涡流的作用力阻碍她们的摆动,于是指针很快地稳定指到读书位置上,这便是涡流效应的应用——电磁阻尼作用。电气阻尼作用还常用于电气机车的电磁制动器中。

控制减小涡流效应

涡流效应产生的原因及涡流效应的利弊与控制_涡流效应

如上文右图(b)以及此处右图所示,为了减少涡流损耗,在电动机、发电机、变压器、交流电磁铁等设备的铁芯材料中,都不使用整块的铁芯,而是采用表面涂有绝缘漆的一片片硅钢片叠压而成。这是因为硅钢中含有2~5%的硅,可提高铁芯的电阻率,此外铁片与铁片之间相互绝缘,使涡流被限制在狭小的薄片之间,回路的电阻很大,涡流便大为减小,从而使涡流存世大大降低。

三 : 涡流的原理及应用

涡流的原理及应用

●涡流的定义

当金属导体处在变化着的磁场中或在磁场中运动时,由于电磁感应作用而在整块金属导体内会产生感应电动势,由于导体自身存在电阻,在导体内部便会产生电流,这种电流在导体中的分布随着导体的表面形状和磁通的分布而不同,其路径往往有如水中的漩涡,因此称为涡流。

由于金属导体本身存在电阻,所以涡流在导体中将产生热量,所消耗的能量来源于使导体运动的机械功,或者建立在磁场变化的能量,因涡流而导致的能量损耗称为涡流损耗。涡流损耗的大小与磁场的变化方式、导体的运动、导体的几何形状、导体的磁导率和电导率等因素有关。

●涡流的好处与害处

一般情况下,在实际应用过程中,都要避免涡流带来的能量损耗,比如电动机,变压器的线圈绕在铁芯上,当线圈中通过交变电流时,在铁芯中将产生涡流,涡流会使铁芯发热,不但消耗了能量,还有可能损毁电动机,因此应该想办法减小涡流,常见的措施有:增大铁芯材料的电阻率,常用表面涂有薄层绝缘漆或绝缘的氧化物硅钢片,并且用许多硅钢片叠合而成,整块金属的电阻很小,涡流很强,采用叠钢片可以将涡流限制在狭窄的薄片之内,回路中的电动势较小,回路长度较长,电阻较大,因此涡流较小,因涡流造成的损失也就较小。 当然,也可以利用涡流做成一些感应加热的设备,最常见的就是电磁炉,首先经过转换装置使电流变为高频交流电,将其加在感应加热线圈上,由此产生高频交变磁场,磁力线通过金属锅底时将产生强大的涡流,由于金属锅底的电阻存在,便会发生电能到磁能再到热能的转换,产生焦耳热,从而达到加热食品的目的。

●涡流的应用——涡流检测

涡流在现实生活中的应用是十分广泛的,下面详细介绍涡流检测技术。利用电磁感应原理,用通过检测被检工件内感生涡流的变化无损的评定导电材料及其工件的某些性能,或发现缺陷的检测方法称为涡流检测。涡流检测是一种无损检测方法,是通过测量涡流传感器的

电阻抗的变化值来实现的。

涡流检测的基本原理为:当载有交变电流的检测线圈靠近导电试件(相当于次级线圈)时,由电磁感应理论可知,与涡流伴生的感应磁场与原磁场叠加,使得检测线圈的复阻抗发生改变。导电体内感生涡流的幅值大小、相位、流动形式及伴生磁场受到导电体的物理及制造工艺性能的影响。因此,通过测定检测线圈阻抗的变化,就可以非破坏性地判断出被测试件的物理或工艺性能及有无缺陷等,此即为涡流检测的基本原理。

涡流检测线圈测出的阻抗变化是各种信息的综合,若需要测出材料内部某一特定信息(如裂纹)时就必须依靠线圈的设计以及仪器的合理组成。抑制掉不需要的干扰信息,突出所需要检测的信息。一般是将检测线圈接收到的信号变成电信号输入到涡流检测仪中,进行不同的信号处理,在示波器或记录仪上显示出来,以判别材料中是否有缺陷。如试件表面有裂纹,会阻碍涡流流过或使它流过的途径发生扭曲变化,最终影响涡流磁场。适用探测线圈可把这些变化情况检测出来。

另外,交变的感生涡流渗入被检材料的深度与其频率的1/2次幂成反比。常规涡流检测使用的频率较高(几百到几兆赫兹),渗透深度通常较浅,因此常规涡流检测是一种表面或近表面的无损检测方法。

为什么仅适用于表面或近表面呢?此时因为趋肤效应,当直流电流通过导体时,横截面上的电流密度是均匀的。 但交变电流通过导体时,导体周围变化的磁场会在导体中产生感应电流,从而会使沿导体截面的电流分布不均匀,表面的电流密度较大,越往中心处越小,尤其是当频率较高时,电流几乎是在导体表面附近的薄层中流动,这种现象称为趋肤效应。

503h?

数学表达式为: f ? r ?

f——电流频率,Hz; ?r——相对磁导率,无量纲;

?——电导率,S/m。

检测线圈的阻抗分析:在涡流检测过程中,检测线圈与被检对象之间的电磁关系可以用两个线圈的耦合(被检对象相当于次级线圈)来类比,为了了解涡流检测中被检对象的某些性质与检测线圈(相当于初级线圈)电参数之间的关系,需要对检测线圈进行阻抗分析。

设通以交变电流的检测线圈(初级线圈)的自身阻抗为Z0 Z0?R1?jX1?R1?j?L1

当初级线圈与次级线圈(被检对象)相互耦合时,由于互感的作用,闭合的次级线圈中会产生感应电流,而这个电流反过来又会影响初级线圈中的电压和电流。这种影响可以用次级线圈电路阻抗通过互感M反映到初级线圈电路的等效阻抗Ze来体现。Z0与Ze之和Z称为初级线圈的视在阻抗:

由于初级线圈中的阻抗发生变化,引起初级线圈中的电流和电压的变化,据此可以知道次级线圈对初级线圈的效应。通过监测初级线圈(检测线圈)视在阻抗的变化来推断被检对象(次级线圈)的阻抗是否发生改变,通常将涡流检测线圈作为构成平衡电桥的一个桥臂。正常情况下,可通过调节平衡电桥中的可变电阻实现桥式电路的

平衡。当检测阻抗发生变化(如线圈的被检测零件中出现缺陷)时,Z?R1??2M2(R2?Rr)??L2222(R2?Rr)?j(?L1??2M2(R2?Rr)??L2222)?R?jX

桥路失去平衡,这时输出电压不再为零,便可检测出金属器件的变化。

以上分析可以看出,检测线圈是非常关键的器件,为适应不同

形状、不同尺寸工件或材料的检测要求,需使用不同形式的检测线圈。按照应用方式不同可分为:穿过式线圈(检测管件外表面的缺陷),内通过式线圈(内壁的表面质量),探头式线圈(各种金属材料的表面检测)。

探头式线圈 穿过式线圈 内通过式线圈

按照电连接方式的不同,分为绝对式(可用于材质分选、涂层测厚、材料探伤),标准比较式(被检工件的性能),自比较式(管材表面的局部缺陷)。

绝对式线圈 自比较式 标准比较式

涡流检测的应用是十分广泛的,可以进行地面金属探测器,涡流探伤仪,涡流测厚仪,材质检验和分选(利用测量电导率来分析)

,前文所

本文标题:电涡流效应的原理-涡流热效应的应用与危害之原理分析
本文地址: http://www.61k.com/1079661.html

61阅读| 精彩专题| 最新文章| 热门文章| 苏ICP备13036349号-1