61阅读

什么是以太网-什么叫以太网?

发布时间:2017-07-30 所属栏目:以太网是什么

一 : 什么叫以太网?

最佳答案以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMA/CD)方法,采用竞争机制和总线拓朴结构。基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。在星型或总线型配置结构中,集线器/交换机/网桥通过电缆使得计算机、打印机和工作站彼此之间相互连接。

以太网具有的一般特征概述如下:

共享媒体:所有网络设备依次使用同一通信媒体。

广播域:需要传输的帧被发送到所有节点,但只有寻址到的节点才会接收到帧。

CSMA/CD:以太网中利用载波监听多路访问/冲突检测方法(Carrier Sense Multiple Access/Collision Detection)以防止 twp 或更多节点同时发送。

MAC 地址:媒体访问控制层的所有 Ethernet 网络接口卡(NIC)都采用48位网络地址。这种地址全球唯一。

Ethernet 基本网络组成:

共享媒体和电缆:10BaseT(双绞线),10Base-2(同轴细缆),10Base-5(同轴粗缆)。

转发器或集线器:集线器或转发器是用来接收网络设备上的大量以太网连接的一类设备。通过某个连接的接收双方获得的数据被重新使用并发送到传输双方中所有连接设备上,以获得传输型设备。

网桥:网桥属于第二层设备,负责将网络划分为独立的冲突域获分段,达到能在同一个域/分段中维持广播及共享的目标。网桥中包括一份涵盖所有分段和转发帧的表格,以确保分段内及其周围的通信行为正常进行。

交换机:交换机,与网桥相同,也属于第二层设备,且是一种多端口设备。交换机所支持的功能类似于网桥,但它比网桥更具有的优势是,它可以临时将任意两个端口连接在一起。交换机包括一个交换矩阵,通过它可以迅速连接端口或解除端口连接。与集线器不同,交换机只转发从一个端口到其它连接目标节点且不包含广播的端口的帧。

以太网协议:IEEE 802.3标准中提供了以太帧结构。当前以太网支持光纤和双绞线媒体支持下的四种传输速率:

10 Mbps – 10Base-T Ethernet(802.3)

100 Mbps – Fast Ethernet(802.3u)

1000 Mbps – Gigabit Ethernet(802.3z))

10 Gigabit Ethernet – IEEE 802.3ae

以太网简史:

1972年,罗伯特?梅特卡夫(Robert Metcalfe)和施乐公司帕洛阿尔托研究中心(Xerox PARC)的同事们研制出了世界上第一套实验型的以太网系统,用来实现Xerox Alto(一种具有图形用户界面的个人工作站)之间的互连,这种实验型的以太网用于Alto工作站、服务器以及激光打印机之间的互连,其数据传输率达到了2.94Mbps。

梅特卡夫发明的这套实验型的网络当时被称为Alto Aloha网。1973年,梅特卡夫将其命名为以太网,并指出这一系统除了支持Alto工作站外,还可以支持任何类型的计算机,而且整个网络结构已经超越了Aloha系统。他选择“以太”(ether)这一名词作为描述这一网络的特征:物理介质(比如电缆)将比特流传输到各个站点,就像古老的“以太理论”(luminiferous ether)所阐述的那样,古代的“以太理论”认为“以太”通过电磁波充满了整个空间。就这样,以太网诞生了。

最初的以太网事一种实验型的同轴电缆网,冲突检测采用CSMA/CD 。该网络的成功,引起了大家的关注。1980年,三家公司(数字设备公司、Intel公司、施乐公司)联合研发了10M以太网1.0规范。最初的IEEE802.3即基于该规范,并且与该规范非常相似。802.3工作组于1983年通过了草案,并于1985年出版了官方标准ANSI/IEEE Std 802.3-1985。从此以后,随着技术的发展,该标准进行了大量的补充与更新,以支持更多的传输介质和更高的传输速率等。

1979年,梅特卡夫成立了3Com公司,并生产出第一个可用的网络设备:以太网卡(NIC), 它是允许从主机到IBM终端和PC机等不同设备相互之间实现无缝通信的第一款产品,使企业能够以无缝方式共享和打印文件,从而增强工作效率,提高企业范围的通信能力。

以太网和IEEE802.3:

以太网是Xerox公司发明的基带LAN标准。它采用带冲突检测的载波监听多路访问协议(CSMA/CD),速率为10Mbps,传输介质为同轴电缆。以太网是在20世纪70年代为解决网络中零散的和偶然的堵塞而开发的,而IEEE802.3标准是在最初的以太网技术基础上于1980年开发成功的。现在,以太网一词泛指所有采用CSMA/CD协议的局域网。以太网2.0版由数字设备公司、Intel公司和Xerox公司联合开发,它与IEEE802.3兼容。

以太网和IEEE802.3通常由接口卡(网卡)或主电路板上的电路实现。以太网电缆协议规定用收发器将电缆连到网络物理设备上。收发器执行物理层的大部分功能,其中包括冲突检测及收发器电缆将收发器连接到工作站上。

IEEE802.3提供了多种电缆规范,10Base5就是其中的一种,它与以太网最为接近。在这一规范中,连接电缆称作连接单元接口(AUI),网络连接设备称为介质访问单元(MAU)而不再是收发器。

1.以太网和IEEE802.3的工作原理

在基于广播的以太网中,所有的工作站都可以收到发送到网上的信息帧。每个工作站都要确认该信息帧是不是发送给自己的,一旦确认是发给自己的,就将它发送到高一层的协议层。

在采用CSMA/CD传输介质访问的以太网中,任何一个CSMA/CDLAN工作站在任何一时刻都可以访问网络。发送数据前,工作站要侦听网络是否堵塞,只有检测到网络空闲时,工作站才能发送数据。

在基于竞争的以太网中,只要网络空闲,任一工作站均可发送数据。当两个工作站发现网络空闲而同时发出数据时,就发生冲突。这时,两个传送操作都遭到破坏,工作站必须在一定时间后重发,何时重发由延时算法决定。

2.以太网和IEEE802.3服务的差别

尽管以太网与IEEE802.3标准有很多相似之处,但也存在一定的差别。以太网提供的服务对应于OSI参考模型的第一层和第二层,而IEEE802.3提供的服务对应于OSI参考模型的第一层和第二层的信道访问部分(即第二层的一部分)。IEEE802.3没有定义逻辑链路控制协议,但定义了几个不同物理层,而以太网只定义了一个。

IEEE802.3的每个物理层协议都可以从三方面说明其特征,这三方面分别是LAN的速度、信号传输方式和物理介质类型。

二 : 什么是工业以太网?

简单介绍
  工业以太网是基于IEEE 802.3(Ethernet)的强大的区域和单元网络。利用工业以太网,SIMATIC NET 提供了1个无缝集成到新的多媒体世界的途径。
  企业内部互联网(Intranet),外部互联网(Extranet),以及国际互联网(Internet)提供的广泛应用不但已经进入今天的办公室领域,而且还可以应用于生产和过程自动化。继10M波特率以太网成功运行之后,具有交换功能,全双工和自适应的100M波特率快速以太网(Fast Ethernet,符合IEEE 802.3u 的标准)也已成功运行多年。采用何种性能的以太网取决于用户的需要。通用的兼容性允许用户无缝升级到新技术。
  为用户带来的利益
  市场占有率高达80%,以太网毫无疑问是当今LAN(局域网)领域中首屈一指的网络。以太网优越的性能,为您的应用带来巨大的利益:
  ·通过简单的连接方式快速装配。
  ·通过不断的开发提供了持续的兼容性,因而保证了投资的安全。
  ·通过交换技术提供实际上没有限制的通讯性能。
  ·各种各样联网应用,例如办公室环境和生产应用环境的联网。
  ·通过接入WA

N(广域网)可实现公司之间的通讯,例如,ISDN 或Internet 的接入。
  ·SIMATICNET基于经过现场应用验证的技术,SIMATICNET已供应多于400,000个节点,遍布世界各地,用于严酷的工业环境,包括有高强度电磁干扰的区域。
  工业以太网络的构成
  1个典型的工业以太网络环境,有以下3类网络器件:
  ·网络部件
  ·连接部件:
    FC 快速连接插座
    ELS(工业以太网电气交换机)
    ESM(工业以太网电气交换机)
    SM(工业以太网光纤交换机)
  MCTP11(工业以太网光纤电气转换模块)
    ·通信介质:普通双绞线,工业屏蔽双绞线和光纤
  SIMATICPLC控制器上的工业以太网通讯外理器。用于将SIMATIC PLC连接到工业以太网。
  PG/PC 上的工业以太网通讯外理器。用于将PG/PC连接到工业以太网。
  工业以太网重要性能
  为了应用于严酷的工业环境,确保工业应用的安全可靠,SIMATIC NET为以太网技术补充了不少重要的性能:
  ·工业以太网技术上与IEEE802.3/802.3u兼容,使用ISO和TCP/IP 通讯协议
  ·10/100M 自适应传输速率
  ·冗余24VDC供电
  ·简单的机柜导轨安装
  ·方便的构成星型、线型和环型拓扑结构
  ·高速冗余的安全网络,最大网络重构时间为0.3 秒
  ·用于严酷环境的网络元件,通过EMC 测试
  ·通过带有RJ45技术、工业级的Sub-D连接技术和安装专用屏蔽电缆的FastConnect连接技术,确保现场电缆安装工作的快速进行
  ·简单高效的信号装置不断地监视网络元件
  ·符合SNMP(简单的网络管理协议)
  ·可使用基于web的网络管理
  ·使用VB/VC 或组态软件就可以监控管理网络
  当今时代,网络就是控制的理念已经越来越被用户所接受,传统的基于RS485,CAN等总线的各种集散控制系统,由于其固有的缺陷,正在被基于TCP/IP协议的工业太网所取代,工业以太网总线和我们现在使用的局域网是一致的,它采用统一的TCP/IP协议,避免的不同协议间通讯不了的困扰,它可以直接和局域网的计算机互连而不要额外的硬件设备,它方便数据在局域网的共享,它可以用IE浏览器访问终端数据,而不要专门的软件,它可以和现有的基于局域网的ERP数据库管理系统实现无缝连接,它特别适合远程控制,配合电话交换网和GSM,GPRS无线电话网实现远程数据采集,它采用统一的网线,减少了布线成本和难度,避免多种总线并存。工业以太网总线正因为有诸多的优点,在国内外逐步得到了迅速的普及,现在已经有大量的配套产品在使用中。如工业以太网HUB,工业以太网防火墙产,工业以太网关,以太网转RS232/RS485设备,以太网A/D模块,以太网D/A模块,以太网AI模块,以太网AO模块,以太网DI模块,以太网DO模块及复合功能模块。

  几年前,当现场总线大战硝烟正浓时,传统上用于办公室和商业的以太网却悄悄地进入了控制领域。近来以太网更是走向前台,发展迅速,颇引人注目。究其原因,是由于工业自动化系统正向分布化、智能化的实时控制方面发展,其中,通信已成为关键,用户对统一的通信协议和网络的要求日益迫切。另一方面,Intranet/Internet等信息技术的飞速发展,要求企业从现场控制层到管理层能实现全面的无缝信息集成,并提供1个开放的基础构架,但目前的现场总线尚不能满足这些要求。应该说,现场总线的出现确实给工业自动化带来一场深层次的革命,但多种现场总线互不兼容,不同公司的控制器之间不能相互实现高速的实时数据传输,信息网络存在协议上的鸿沟导致出现“自动化孤岛”等,促使人们开始寻求新的出路,并关注到以太网。以太网有以下优点:

  (1)具有相当高的数据传输速率(目前已达到100Mb/s),能提供足够的带宽;
  (2)由于具有相同的通信协议,Ethernet和TCP/IP很容易集成到IT(信息技术)世界;
  (3)能在同一总线上运行不同的传输协议,从而能建立企业的公共网络平台或基础构架;
  (4)在整个网络中,运用了交互式和开放的数据存取技术;
  (5)沿用多年,已为众多的技术人员所熟悉,市场上能提供广泛的设置、维护和诊断工具,成为事实上的统一标准;
  (6)允许使用不同的物理介质和构成不同的拓扑结构。

  至于以太网存在的不确定性和实时性能欠佳的问题,已由于智能集线器的使用、主动切换功能的实现、优先权的引入以及双工的布线等,基本上得到了解决。通过提高数据传输速率,仔细地选择网络的拓扑结构及限制网络负载等,可将发生数据冲突的概率降到最低。此外,如Hirschmann公司已开发出一系列加固的、适合用于工业环境

的密封和抗振动的以太网器件,如导轨式收发器、集线器、切换器、连接件等;Woodhead Connectivity公司推出保护等级为IP67的RJ-45连接器件。凡此种种,给以太网进入实时控制领域创造了条件。正因为如此,ARC(Automation ResearchCompany)预测今后Ethernet和TCP/IP将成为器件总线和现场总线的基础协议。VDC (Venture Development Corp.)在1999年3月19日发布的调查报告中预测,在工业控制应用领域,以太网的世界市场份额将由1998年的8.4%跃升为2003年的22%,是各种总线中升幅最大的。

  目前世界上已有一些国际组织从事推动以太网进入控制领域的工作,如IEEE(美国电气和电子工程师协会)正在着手制订现场总线和以太网通信的新标准。该标准将使网络能看到“对象”。IAONO(工业自动化开放网络联盟)最近与ODVA和IDA集团就共同推进Ethernet和TCP/IP达成共识。ODVA(DeviceNet供应商协会)于2000年3月17日发布了1个为在工厂基层使用以太网服务的工业标准。FF(现场总线基金会)于2000年3月29日公布了高速以太网(100Mb/s)的最终技术规范(FSI1.0)。工业以太网协会与美国的ARC、Advisory Group等单位合作,开展工业以太网关键技术的研究。目前1000Mb/s以太网的发展已进入实用阶段,虽然其价格还比较昂贵。由以上分析可知,以太网进入工业控制领域是1个不可忽视的发展趋势。本文概要介绍工业以太网最近的一些进展,并对今后的展望作一些探讨。

  一在应用层中的进展     

  1. 封装   
  众所周知,以太网自身只提供一系列的物理介质定义和1个共享的构架。构架包括物理介质、帧格式和LAN设备数据的寻址格式,即它只提供物理层和数据链路层。而Ethernet、TCP/IP则包含IP协议(层三)、TCP或UDP协议(层四),当以太网用于信息技术时,第七层含有HTTP(超级文本传输协议)、FTP(文件传输协议)、SNMP(简单网络管理协议)、SMTP(简单电子邮件传送协议)和Telnet(远程登录)等。但当它用于工业控制时,体现在第七层的是实时通信、用于系统组态的对象以及工程模型的应用协议。对这些不同的概念进行组装称为“封装”(Encapsulation)。TCP/IP支持基于异种操作系统的异种网络间的互联,它是真正的开放系统通信协议,已成为目前国际上进行异种网络互联的事实上的标准。

  “封装”是将报文帧嵌入到TCP或UDP的容器中。典型的例子有Rockwell Automation和ODVA开发的Ethernet/IP、FF开发的HSE(高速以太网)、SchneiderElectric开发的ModbusTCP/IP。所有这些协议数据在发送到以太网以前,现场总线报文基本上没有什么变化并作为“用户数据”嵌入到TCP/IP帧内,很容易向下兼容到基于以上总线的协议。
  Rockwell Automation和ODVA推出的Ethernet/IP,应用了压缩的ControlNet和DeviceNet协议的CIP(Control and InformationProtocol,控制和信息协议)。
  CIP通过“隐性”和“显性”信息提供用于存取数据和控制设备的宽范围的服务。
  在发送CIP数据包以前必须对其进行封装,CIP数据包给定1个报文首部(header),该首部的内容取决于所请求的服务属性。
  通过以太网连接的CIP数据包包括1个专用的以太网首部、1个IP首部、1个TCP首部和1个封装首部。封装首部包含的字段有控制命令、格式、状态信息和同步数据等,这允许CIP数据能通过TCP或UDP传送并确保在接收方进行解码。
  Schneider Electric推出的“透明工厂”,其核心是Ethernet和TCP/IP,封装有Modbus协议的ModbusTCP/IP的模块应用于MemetumPLC。ModbusTCP已成为半导体工业的标准EMIE54.9-2000。
  FF的HSE是高效地映像到UDP(用户数据报文协议,1个被认为优于TCP的传输协议,其首部比TCP首部短而简单,只需八个字节,而TCP为长度可变的40个字节)的1个最佳例子,HSE采用Publisher/Subscriber协议,为IEC61158现场总线国际标准的类型5。
  另1种解决方案是在现场总线的上层运行或封装有TCP/IP。Interbus就是这种解决方案,它的以太网策略是将TCP/IP报文分割为若干个小型数据包并封装在Interbus的参数通道进行传输,其总和帧协议仍保持不变。这些被分割的数据包将在接收方重新装配从而恢

复为原来的TCP/IP报文。
  封装方案的缺点是协议的效率低,以太网的首部比用户数据大得多,从而大幅度地增加开销,因此封装方案只适用于发送大容量的数据信息。

  2. 代理服务器   
  代理服务器(Proxy)类似于对2个不同通信协议进行转换的网关(Gate-way),但其功能要比后者强得多。代理服务器的主要目标是将标准现场总线网络集成到工业以太网网络,其主要优点是现有的现场总线设备在今后仍能长期使用,从而保护用户的投资。支持这种观点的是由Profibus国际组织发布的Profinet,它包含2个概念,即开放的、面向对象的运行期(Runtime)概念和独立于制造商的工程概念。运行期概念基于TCP/IP、UDP、RPC(运程程序调用)和DCOM,并对这些基本机制进行加强和优化,因而它适合于高实时性能要求的应用领域。工程概念包括建立工程对象模型,它不仅使用户能通过不同制造商的组态工具进行开发,还可以采用分面(Facet)的方法定义制造商和应用专用的扩展功能,因此支持在单个工厂范围集成不同制造商的产品。

  3. 实时通信系统  
  IDA(Interface for DistributedAutomation,用于分布式自动化的接口)采用美国California公司开发的位于第四层的NDDS实时通信系统,NDDS是Publisher/Subscriber模式,提供宽范围强有力的应用服务。IDA的另1个重要特性是基于Web的设备管理。所有现场设备均有其本身的Web页面,包括组态、操作和诊断参数,用户可通过标准的浏览器进行访问。基于XML的设备描述简化了系统的组态,并支持设备的互操作性和互换性。IDA位于工业以太网的第七层,它还定义从第四层到第七层和应用接口(API)之间的通信,甚至还包括应用程序的标准编程接口。IDA集团在2001年的德国汉诺威博览会上公布了其技术规范。
     
  二 嵌入以太网的I/O     
  早在1998年,Foxboro公司就成功地将其Micro-I/A自动化系统中的以太网I/O用于德国BayerAG公司的氯碱分厂,以太网将所有现场设备、控制器和PC机工作站集成为1个高可靠、低成本的实时控制的信息网络。近年来,一些公司已推出不少以太网I/O产品,举例如下:
  (1)Opto22从1998年第四季度起开始提供以太网I/O产品,并不断扩展和改进其产品,如开发符合802.11和802.11b的无线电访问以太网产品和用于管理的SNMP以太网产品;
  (2)National Instruments的Field Point I/O能提供现场设备到以太网的链接;
  (3)SixNet提供嵌入以太网芯片的I/O模块;
  (4)Optimation(Hutsrille, Ala)发布内装以太网的I/O新产品;
  (5)Automation direct.com和Omron Electric联合宣布的以太网I/O新产品已面市;
  (6)GEFanuc Automation在2000年的美国国家周上宣告其所有的自动化产品均支持与以太网的链接;
  (7)Zonework(Temecala,Calif)推出其第一套产品,声称是使传统的自动化控制器能访问以太网的基础结构;
  (8)Action公司的子公司Busware公布以太网的E系列I/O模块。
  此外,现在已有嵌入以太网芯片的智能现场总线设备问世,如Schneider Electric的Altivar 58变频器,不仅能连接到本公司的PLC系列,亦能连接到内装有Web服务器的第三方控制器。通过该控制器,还可远程存取Altivar 58变频器的各种数据。

  三网络就是控制器    
  德国JetterAG(Ludwisburg, Germany)最近发布的Jetweb自动化系统立意新颖,它是基于100Mb/s以太网的分布式智能控制系统,宣称“网络就是控制器”的观点。其特点是:(1)类似Internet的结构,对数据的实时传输不需要编程,不需要考虑网络的层次结构;(2)对用户来说,只有一组数据和1个程序,所有数据在网络中只需表达一次,程序和数据均可以重复使用,网络扮演真正服务器的作用;(3)从传感器到工厂管理层,只有一条以太网总线进行直接通信;(4)可连接到Internet,实现整个工厂全球化联网;(5)以太网既是连接到各种智能模块的系统总线,又是连接现场设备的现场总线,内部和外部的通信在此没有什么区别,集线器技术被集成在每个控制器中,通过分配地址空间将内部通信从外部通信中分离出来。

  四小结    
  SiemensEnergy & Automation的网络产品经理Horst Kohlbert说:“嵌入有以太网的现场设备,以

及嵌入的Internet服务器不久都将成为现实”。这个预言提示工业以太网即将进入现场控制级。但从目前的趋势来看,已有的现场总线仍将继续存在,不太可能退出历史舞台。在现场级,工业以太网能占领一定的市场,但它是否能作为实时控制通信的单一标准,一时难作定论,最有可能的是发展1种混合式控制系统。此外,并非每种现场总线都将被工业以太网总线所替代,如AS-i、CAN,这2种现场总线就应用于二位I/O传感器/执行器而言,无疑是最佳的(AS-i传输4位数据,且总线可带电;CAN最多传输八个字节),还有一些专用总线,如SERCOS (用于数控,控制运动轴,为IEC61491国际标准)、Instabus(用于楼宇),都有其专门的应用领域,均不适宜于工业以太网。另外,易燃、易爆(如化工、制药),以及环境条件恶劣、可靠性要求很高的应用场合,也不适宜于应用工业以太网。

  综上所述,已有的现场总线有它自己的市场定位,将来仍将保持这种状况,或与工业以太网相结合。现场总线不可能为工业以太网所替代,但后者发展的巨大潜力决不容忽视,其应用领域定将不断地得到扩展。

三 : 网络管理之什么是以太网

大家都知道“以太网”和“局域网”这两个词,有人甚至不加区分地使用它们。那么,它们是不是可以等同?到底什么是以太网呢?

★以太网和局域网的关系

以太网仅是局域网的一种,与已经淘汰的令牌环网、FDDI(光纤分布式数据接口)网等是并列关系,是包括在局域网分类体系里的(请见附图)。

为什么有许多人搞不清以太网与局域网的关系呢?因为最近七八年以来,以太网因为其高性价比、易于维护的特点,在局域网中迅速普及,把令牌环网等其他类型的网络逐渐淘汰,我们现在的网络几乎都是以太网,以太网技术已经成为当前局域网采用的主流技术,所以以太网几乎就成了局域网的代名词,难怪有许多人分不清楚它们。

★以太网的种类

按照不同的标准,现在流行的以太网具有以下种类。

1、按速率分类

按照不同的速率,可以分为以太网(10Mbps)、快速以太网(10/100Mbps自适应)、千兆以太网(1000Mbps)、万兆以太网(10Gbps)。

(1)以太网

严格地说,“以太网”指的就是10Mbps的共享式以太网,但是快速以太网、千兆以太网、万兆以太网也沿用了以太网的技术标准,所以泛泛称为“以太网”。以太网的速率是10Mbps,五六年前建设的局域网大都是10Mbps以太网,现在还能够经常见到它的身影,但是在新建的网络中,已经不使用它了,因为它的速度已经不能满足用户当前对网络带宽的需要了。

许多初学者都会把“Mbps”和“MB”搞混淆了。“bps”是“bits per second”(每秒位数)的缩写,即每秒网络接收或发送多少二进制的“位”,是数据传输单位;而“MB”是“mega bytes”(百万字节)的缩写,是数据容量单位。显然,二者是截然不同的两个单位。

“bps”与“MB”也不是毫不相干,而是存在一定的关系,网络的“bps”越高,网络传送数据也就越快。一般网络上8个位(bit)组成1个字节(byte),所以从理论上讲,10Mbps网络上每秒能够收发1.25×106字节。但是实际上远远没有那么高,因为10Mbps是全部的数据传输率,而不是有效数据传输率,因为除了有效数据帧以外,帧头、帧尾、帧中的系统数据均占用带宽。

(2)快速以太网

快速以太网的标准在1995年通过了IEEE标准,它运行在10Mbps和100Mbps速率上,因为它可以判断并自动适应对方连接设备的速率。快速以太网是当前中小型局域网的主要选型,因为100Mbps以太网的网络设备(网卡、集线器和交换机)的价格已经很低了,而且性能基本可以满足当前大多数中小企业应用的需要。

(3)千兆以太网

千兆以太网标准的制订时间并不长,1998年通过IEEE标准。它的速率可高达1000Mbps,性能与ATM网络接近,但是价格却比ATM网络低得多,而且可以使用现有的五类布线系统,因此现在组建校园网以及大中型局域网的时候,千兆以太网是组网的首选。

(4)万兆以太网

万兆以太网是以太网家族中的“新贵”,2002年标准才确定,其速率可高达10Gbps,而且增加了许多前所未有的优良特性,完全可以满足城域网对带宽的需要,因此现在它已经突破了“以太网只能用于局域网”的局限,跨入了城域网技术行列。

2、按带宽的使用方式分类

按照带宽的使用方式的不同,可以将以太网分为共享式以太网和交换式以太网。

(1)共享式以太网

共享式以太网采用集线器作为网络连接设备,其带宽是由连接在网络上的主机共享的。比如说一个100Mbps共享式以太网,网络上连接了4台主机,则每台主机平均分配有25Mbps的带宽。

(2)交换式以太网

交换式以太网采用交换机作为网络连接设备,每个端口的带宽是由连接的主机独自占有的(假设交换机每个端口上只连接一台主机)。比如一个100Mbps交换式以太网,交换机上连接了20台主机,交换机每个端口还是分配100Mbps带宽。

在实际应用过程中,经常会采用集线器和交换机级联使用的做法,此时的网络是混合型的网络。

四 : 什么是以太?

摘自百度百科:
以太本来是爱因斯坦最初为了解决光速的参考系问题而人为设想的一种物质。(www.61k.com]光速是光传播的速度,但速度是需要一个静止的参考系做为标准的,那么光的运行是以什么为参考系呢?爱因斯坦就设想在宇宙中充满了一种均匀的无质量的物质,他把它叫做“以太”,光速就是以这种“以太”为参照系的。
后来的理论发展和实验都证明,“以太”是不存在的,光速在任何参考系中都是一样的。这也是狭义相对论的一个基础。

摘自维基百科:
以太(或译乙太;英语:ether或aether)是古希腊哲学家所设想的一种物质,是一种曾被假想的电磁波的传播媒质。但后来的实验和理论表明,如果不假定“以太”的存在,很多物理现象可以有更为简单的解释。也就是说,没有任何观测证据表明“以太”存在,因此“以太”理论被科学界所抛弃。

19世纪,科学家们逐步发现光是一种波,而生活中的波大多需要传播介质(如声波的传递需要借助于空气,水波的传播借助于水等)。受经典力学思想影响,于是他们便假想宇宙到处都存在着一种称之为以太的物质,而正是这种物质在光的传播中起到了介质的作用。

以太的假设事实上代表了传统的观点: 电磁波的传播需要一个“绝对静止”的参照系,当参照系改变,光速也改变。

这个“绝对静止系”就是“以太系”。其他惯性系的观察者所测量到的光速,应该是 "以太系" 的光速,与这个观察者在 "以太系" 上的速度之矢量和。

按照当时的猜想,以太无所不在,没有质量,绝对静止。以太充满整个宇宙,电磁波可在其中传播。假设太阳静止在以太系中,由于地球在围绕太阳公转,相对于以太具有一个速度v,因此如果在地球上测量光速,在不同的方向上测得的数值应该是不同的,最大为 c+v,最小为 c-v。如果太阳在以太系上不是静止的,地球上测量不同方向的光速,也应该有所不同。

1881年-1884年,阿尔伯特·迈克耳孙和爱德华·莫雷为测量地球和以太的相对速度,进行了著名的迈克耳孙-莫雷实验。实验结果显示,不同方向上的光速没有差异。这实际上证明了光速不变原理,即真空中光速在任何参照系下具有相同的数值,与参照系的相对速度无关,以太其实并不存在。后来又有许多实验支持了上面的结论。

以太说曾经在一段历史时期内在人们脑中根深蒂固,深刻地左右着物理学家的思想。著名物理学家洛伦兹推导出了符合电磁学协变条件的洛伦兹变换公式,但无法抛弃以太的观点。

然而根据麦克斯韦方程组,电磁波的传播不需要一个“绝对静止”的参照系,因为该方程里两个参数都是无方向的标量,所以在任何参照系里光速都是不变的。
c=sqrt(epsilon0*mu0)
其中 是真空电容率,μ0 是真空磁导率。

爱因斯坦则大胆抛弃了以太学说,认为光速不变是基本的原理,并以此为出发点之一创立了狭义相对论。虽然后来的事实证明确实不存在以太,不过以太假说仍然在我们的生活中留下了痕迹,如以太网等。
摘录结束

实际上迈克尔孙当时是很痛苦的,他的实验的初衷并非证明“以太不存在,光速不变”,而是利用他精致的干涉仪证明“绝对静止的以太是存在的”。结果他失望,恰恰相反,他至少证明了以太和地球表面是相对静止的。然而,一切的一切告诉我们,运动是相对的,绝对的运动是不存在的。

科学事实似乎预示着,如果爱因斯坦不创立狭义相对论,那么迟早的洛伦兹或者庞加莱或者其他科学家也一定会创建狭义相对论。只是时间的问题。这并不意味着削弱了爱因斯坦的功绩,爱因斯坦发现了狭义相对论,是无可质疑的。

五 : 高速以太网的主要特点是什么?

高速以太网的主要特点是什么?

高速以太网的主要特点是什么?的参考回复

千兆以太网是建立在以太网标准基础之上的技术。千兆以太网和大量使用的以太网与快速以太网完全兼容,并利用了原以太网标准所规定的全部技术规范,其中包括CSMA/CD协议、以太网帧、全双工、流量控制以及IEEE 802.3标准中所定义的管理对象。作为以太网的一个组成部分,千兆以太网也支持流量管理技术,它保证在以太网上的服务质量,这些技术包括IEEE 802.1P第二层优先级、第三层优先级的QoS编码位、特别服务和资源预留协议(RSVP)。 千兆以太网  千兆以太网还利用IEEE 802.1QVLAN支持、第四层过滤、千兆位的第三层交换。千兆以太网原先是作为一种交换技术设计的,采用光纤作为上行链路,用于楼宇之间的连接。之后,在服务器的连接和骨干网中,千兆以太网获得广泛应用,由于IEEE 802.3ab标准(采用5类及以上非屏蔽双绞线的千兆以太网标准)的出台,千兆以太网可适用于任何大中小型企事业单位。   目前,千兆以太网已经发展成为主流网络技术。大到成千上万人的大型企业,小到几十人的中小型企业,在建设企业局域网时都会把千兆以太网技术作为首选的高速网络技术。千兆以太网技术甚至正在取代ATM技术,成为城域网建设的主力军。 千兆以太网的特点  千兆以太网的特点主要包括如下。   1.千兆位以太网提供完美无缺的迁移途径,充分保护在现有网络基础设施上的投资。千兆位以太网将保留IEEE 802.3和以太网帧格式以及802.3受管理的对象规格,从而使企业能够在升级至千兆性能的同时,保留现有的线缆、操作系统、协议、桌面应用程序和网络管理战略与工具;   2.千兆位以太网相对于原有的快速以太网、FDDI、ATM等主干网解决方案,提供了一条最佳的路径。至少在目前看来,是改善交换机与交换机之间骨干连接和交换机与服务器之间连接的可靠、经济的途径。网络设计人员能够建立有效使用高速、关键任务的应用程序和文件备份的高速基础设施。网络管理人员将为用户提供对Internet、Intranet、城域网与广域网的更快速的访问。   3.IEEE 802.3工作组建立了802.3z和802.3ab千兆位以太网工作组,其任务是开发适应不同需求的千兆位以太网标准。该标准支持全双工和半双工1000Mbps,相应的操作采用IEEE 802.3以太网的帧格式和CSMA/CD介质访问控制方法。千兆位以太网还要与10BaseT和100BaseT向后兼容。此外,IEEE标准将支持最大距离为550米的多模光纤、最大距离为70千米的单模光纤和最大距离为100米的铜轴电缆。千兆位以太网填补了802.3以太网/快速以太网标准的不足。 千兆网卡千兆以太网的构建  千兆以太网络是由千兆交换机、千兆网卡、综合布线系统等构成的。千兆交换机构成了网络的骨干部分,千兆网卡安插在服务器上,通过布线系统与交换机相连,千兆交换机下面还可连接许多百兆交换机,百兆交换机连接工作站,这就是所谓的“百兆到桌面”。在有些专业图形制作、视频点播应用中,还可能会用到“千兆到桌面”,及用千兆交换机联到插有千兆网卡的工作站上,满足了特殊应用下对高带宽的需求。   在建设网络之前,究竟用千兆还是百兆,要从实际出发,从应用出发,考虑网络应该具备哪些功能。不同的应用有不同的需求,而且几乎没有只有单一业务的网络。但是,在各种业务中,生产性业务肯定是优先级最高的。如果在网络中传输语音,那么语音业务也需要优先安排。如果对业务优先的需求很高,网络必须有QoS保证。这样的网络必须要智能化,在交换机端口能够识别是什么类型的业务通过,然后对不同的业务进行排队,为不同的业务分配不同的带宽,这样才能保证关键性业务的运行。数据业务本身是有智能的,不管多少带宽都可以传输,只是时间长短而已,但是语音或者视频就不一样了,如果带宽小了之后,马上就听不清楚了,或者图像产生抖动,这都是不允许的。所以QoS非常重要。对单纯的数据网络,在QoS方面的需求就很低。在规划网络的时候,必须先了解清楚哪些功能是必须的,哪些可以不考虑。例如,目前多址广播是比较重要的性能之一,如果需要在网络中传输图像,而网络不具备多址广播的特性,那么网络的带宽浪费就会非常严重,甚至根本无法实现。 千兆以太网国际标准  1997年1月,通过了IEEE 802.3z第一版草案;   1997年6月,草案V3.1获得通过,最终技术细节就此制定;   1998年6月,正式批准IEEE 802.3z标准;   1999年6月,正式批准IEEE 802.3ab标准(即1000Base-T),可以把双绞线用于千兆以太网中。   千兆位以太网标准主要针对三种类型的传输介质:单模光纤;多模光纤上的长波激光(称为1000BaseLX)、多模光纤上的短波激光(称为1000BaseSX);1000BaseCX介质,该介质可在均衡屏蔽的150欧姆铜缆上传输。IEEE 802.3z委员会模拟的1000BaseT标准允许将千兆位以太网在5类、超5类、6类UTP双绞线上的传输距离扩展到100米,从而使建筑楼宇内布线的大部分采用5类UTP双绞线,保障了用户先前对以太网、快速以太网的投资。对于网络管理人员来说,也不需要再接受新的培训,凭借已经掌握的以太网网络知识,完全可以对千兆以太网进行管理和维护。 千兆交换机  千兆以太网的标准化包括编码/译码、收发器和网络介质三个主要模块,其中不同的收发器对应于不同的网络介质类型。1000BASE-LX基于1300nm的单模光缆标准时,使用8B/10B编码解码方式,最大传输距离为5000米。1000BASE-SX基于780nm的FibreChannel optics,使用8B/10B编码解码方式,使用50微米或62.5微米多模光缆,最大传输距离为300米到500米。连接光纤所使用的SC型光纤连接器与快速以太网100BASE FX所使用的连接器的型号相同。1000BASE-CX是一种基于铜缆的标准,使用8B/10B编码解码方式,最大传输距离为25米。1000BASE-T基于非屏蔽双绞线传输介质,使用1000BASE-T 铜物理层Copper PHY编码解码方式,传输距离为100米。1000BASE-T在传输中使用了全部4对双绞线并工作在全双工模式下。这种设计采用 PAM-5 (5级脉冲放大调制) 编码在每个线对上传输 250Mbps。双向传输要求所有的四个线对收发器端口必须使用混合磁场线路,因为无法提供完美的混合磁场线路,所以无法完全隔离发送和接收电路。任何发送与接收线路都会对设备发生回波。因此,要达到要求的错误率(BER)就必须抵消回波。1000BASE-T无法对频率集中在125MHz之上的频段进行过滤,但是使用扰频技术和网格编码能对80MHz之后的频段进行过滤。为了解决5类线在如此之高的频率范围内因近端串扰而受到的限制,应该采用合适的方案来抵消串扰。   最初的千兆以太网采用高速780纳米光纤信道的光元件传输光纤上的信号,采用8B/10B的编码和解码方法实现光信号的串行化和复原。目前光纤信道技术的数据运行速率为1.063Gbps,将来会提高到1.250Gbps,使数据速率达到完整的1000Mbps。对于更长的连接距离,将采用1300纳米的光元件。为了适应硅技术和数字信号处理技术的发展,应在MAC层和PHY层之间制定独立于介质的逻辑接口,以使千兆以太网工作在非屏蔽双绞线电缆系统中。这一逻辑接口将适用于非屏蔽双绞线电缆系统的编码方法,并独立于光纤信道的编码方法。下图说明了千兆以太网的组成。 如何升级至千兆以太网  把10M、100M网络升级至千兆的条件并不多,最主要的是综合布线条件。千兆以太网指的是网络主干的带宽,要求主干布线系统必须满足千兆以太网的要求。如果原来的网络覆盖距离相隔几百米至几公里的多幢建筑物,则原来的主干布线一般采用的是多模或单模光纤,能够满足千兆主干的要求,可以不必重新敷设光纤了。在建筑物之间的距离小于550米的情况下,一般敷设价格相对低廉的多模光纤就可以满足千兆以太网的需要。   如果原来的网络只覆盖了一幢建筑,而且最远的网络节点与网络中心的距离不超过100米,则可以利用原来的5类或超5类布线系统。如果原来的布线系统达不到5类标准,或者采用了总线型布线系统而不是星型布线系统,则必须重新布5类线。   升级至千兆以太网,首先要将网络主干交换机升级至千兆,以提高网络主干所能承受的数据流量,从而达到加快网络速度的目的。以前的百兆交换机作为分支交换机,以前的集线器则可以在布线点不足的地方使用。目前千兆交换机的产品已经很多,可以根据网络的要求和预算等实际情况选择。 千兆以太网  网络上的服务器需要吞吐大量的数据,如果网络主干升级至千兆,但是服务器网卡还停留在百兆的水平上,服务器网卡就会成为网络的瓶颈,必须使用千兆网卡才能消除这个瓶颈,解决方法是在原来的服务器上添加千兆网卡。注意应该优先选购64位PCI的千兆网卡,其性能比普通PCI千兆网卡高一些。千兆网卡可以根据网络的要求和预算等实际情况选择。   网络主干升级了,网络的分支也应随之升级。如果原来的用户计算机已经安装了10M/100M自适应网卡,则可以不必升级网卡,只要将网卡接到百兆交换机上就可以了;如果原来使用的是10Mbps网卡,则需要将网卡更换为10M/100M自适应网卡,这样才能提高工作站访问服务器的速度。 千兆以太网的前景预测  预计到2005年之前,数据传输量每年将以3倍的速度增长,并于当年超过语音传输量,成为全球通信网络主要的传输方式。面对日益增长的数据流和多媒体服务,大容量、高速率、多功能模块高端网络产品的市场规模将不断扩大。可以预见的是,千兆以太网交换机所占的市场份额会越来越大。随着Internet的发展和网络上层出不穷应用的出现,万兆以太网将是以后的主流,但至少在近两年内,千兆以太网仍然是市场上的主流。 [编辑本段]千兆以太网技术优势  在局域网中为了维持直径为200米的最大碰撞区域,最小CSMA/CD载波时间,以太网时间片已从目前的512比特扩展到512字节(4096比特),最小信息包大小仍为64字节。载波扩展特性在不修改最小包尺寸的条件下解决了CSMA/CD固有的时序问题。虽然这些改变可能会影响到小信息包的性能,然而这种影响已经被CSM/CD算法中称作信息包突发传送的特性所抵消。千兆位以太网最大的优点在于它对现有以太网的兼容性。   同100M位以太网一样,千兆位以太网使用与10M位以太网相同的帧格式和帧大小,以及相同的CSMA/CD协议。这意味着广大的以太网用户可以对现有以太网进行平滑的、无需中断的升级,而且无需增加附加的协议栈或中间件。同时,千兆位以太网还继承了以太网的其它优点,如可靠性较高,易于管理等。   千兆以太网相比其他技术具有大带宽的优势,并且仍具有发展空间,有关标准组织正在制定10G以太网络的技术规范和标准。同时基于以太网帧层及IP层的优先级控制机制和协议标准以及各种QoS支持技术也逐渐成熟,为实施要求更佳服务质量的应用提供了基础。伴随光纤制造和传输技术的进步,千兆位以太网的传输距离可达百公里,这使得其逐渐成为构建城域网乃至广域网络的一种技术选择。   主干采用千兆以太网的好处在于:千兆位以太网将提供10倍于快速以太网的性能并与现有的10/100 以太网标准兼容。同时为10/100/1000 Mbps 开发的虚拟网标准 802.1Q以及优先级标准 802.1p 都已推广,千兆网已成为构成网络主干的主流技术。   1998 年六月已制定完成的第一个千兆位以太网标准 802.3 以使用光纤线缆和短程铜线线缆的全双工链接为对象。针对半双工和远程铜线线缆的标准 802.3ab 于 1999 年内出台。   千兆位以太网将提供完美无缺的迁移途径,充分保护在现有网络基础设施上的投资。千兆位以太网将保留802.3和以太网帧格式以及 802.3 受管理的对象规格,从而将使企业能够在升级至千兆性能的同时,保留现有的线缆、操作系统、协议、桌面应用程序和网络管理战略与工具。   千兆位以太网相对于原有的快速以太网、FDDI、ATM等主干网解决方案,提供了另一条改善交换机与交换机之间骨干连接和交换机与服务器之间连接的可靠、经济的途径。网络设计人员将能够建立有效使用高速、任务关键的应用程序和文件备份的高速基础设施。网络管理人员将为用户提供对Internet、Intranet、城域网与广域网的更快速的访问。   千兆位产品提供商,具有完整的千兆以太网产品线,可契合用户需求提供完整的解决方案。从核心的网络主干交换机到边缘的客户机服务器千兆接入,有针对用户需求设计的高性能的产品。千兆以太网交换机的部署,是一个非常引人注目的技术。目前,许多厂商的交换机把第2层交换和第3层交换融于一体,不论交换还是路由,都能提供至少1000万pps的转发速率,甚至有的产品还可达到2000万pps。这些高性能的特点对于Intranet来讲已显得非常重要,因为传统的局域网流量80/20自然法则(即80%的流量在本地工作组网络内和20%的流量流向骨干网)已经过时。   千兆以太网高速的多层数据包转发能力是千兆以太网技术能提供最好的性能价格比的有力例证。不仅如此,千兆以太网技术对于降低网络的长期拥有成本也是大有裨益的。 [编辑本段]千兆网交换技术  从1996年底开始,有些公司陆续推出集成了第2层交换和第3层路由的交换机产品,这种技术称之为“多层交换(multilayer switching)”。它为第2层交换技术增加了路由层服务,支持有选择的广播和组播抑制,支持VLAN及VLAN之间的数据包转发和防火墙功能,全面支持TCP/IP和IPX路由。 千兆以太网  经过将近4年时间的发展,这些功能不断地得到了完善和加强,使得多层交换机比传统的路由器的性能价格比高出8至16倍。而新一代多层交换机以千兆以太交换技术为核心, 可以提供更加吸引人的性能价格比,是部门级网络和数据中心网络中替代传统路由器的最理想的可以提供多层交换的交换机。同时,其直接传输距离目前已达到130公里,完全可以实现以千兆以太网为骨干的大的企业局域网,骨干传输速率为2Gbps(全双工模式)。   推动技术发展的主要因素推动高速多层交换技术发展的最大因素是采用廉价的10/100M自适应网卡的Internet和Intranet的大量部署。目前的网络已经离传统的c/s计算模式的层次结构越来越远,传统的c/s模式的80/20流量法则已成为过去。在网络设计方面, 传统的路由器加Hub或第2层交换机的网络部署模式也将变成历史。   另外,Intranet支持更加复杂的和对带宽敏感的各种多媒体数据流,如数据、文件、图片、动画、声音和视频等。一个Intranet最终用户对带宽的要求至少要比非Intranet 用户多50%~100%。同时,宽带接入已成为发展趋势。   另一个值得注意的问题是,为用户提供快速以太网连接可以提供更多的带宽余量来处理突发的交通量,这点是10BASE-T技术无法比拟的。突发流量是IP网络应用的特点之一。廉价和高带宽使得快速以太网不论在用户端还是服务器端都得以广泛的应用。   为了在无阻塞和处理突发交通流量的能力之间取得平衡,新一代交换机平台必须提供高于用户请求连接的8~16倍速率的主干连接,而以千兆以太网为主干正好满足了用户端的快速以太网连接的服务请求。这对于充分处理突发流量非常重要。   同时,在校园网或城域网中,不管跨越几个网络层,对于随机的Intranet交通量都要求提供端到端的持续不变的高性能。为了实现这一点,在一台交换机中同时具备高性能的第2层和第3层转发能力是唯一的解决方案。   无阻塞能力和有选择的转发功能是用户的主要需求。而各种非常有效的网管工具使得网络管理员能够有效且高效地把业务策略注入转发引擎中,其性能可以通过网管软件实时监测。这将从根本上有助于用户根据公司的短期和长期业务发展需要确定和交付所需的网络服务。新一代千兆以太网交换机支持这些特点和服务,同时也支持通用的路由协议,如IP/RIP或IP/OSPF等。这也大大降低了网络设备的复杂性。 [编辑本段]网络设计的目标及原则  网络系统的高性能要求核心交换机满足网络中心海量数据交换的要求,上连中心的通讯链路带宽能够满足应用对网络的性能要求。不管是企业网还是城域网、广域网,其上的信息应用正以前所未有的速度发展,新的多媒体应用及新的数据应用对带宽提出了更高的要求。

(www.61k.com。

参考自:

本文标题:什么是以太网-什么叫以太网?
本文地址: http://www.61k.com/1054524.html

61阅读| 精彩专题| 最新文章| 热门文章| 苏ICP备13036349号-1